File size: 8,952 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# coding=utf-8
# Copyright (C) 2020 ATHENA AUTHORS; Yiping Peng; Ne Luo
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Only support eager mode and TF>=2.0.0
# pylint: disable=no-member, invalid-name, relative-beyond-top-level
# pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes
''' voxceleb 1 & 2 '''

import os
import sys
import zipfile
import subprocess
import hashlib
import pandas
from absl import logging
import tensorflow as tf
import soundfile as sf

gfile = tf.compat.v1.gfile

SUBSETS = {
    "vox1_dev_wav":
        ["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad"],
    "vox1_test_wav":
        ["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip"],
    "vox2_dev_aac":
        ["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaa",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partab",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partac",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partad",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partae",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaf",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partag",
         "http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partah"],
    "vox2_test_aac":
        ["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_test_aac.zip"]
}

MD5SUM = {
    "vox1_dev_wav": "ae63e55b951748cc486645f532ba230b",
    "vox2_dev_aac": "bbc063c46078a602ca71605645c2a402",
    "vox1_test_wav": "185fdc63c3c739954633d50379a3d102",
    "vox2_test_aac": "0d2b3ea430a821c33263b5ea37ede312"
}

USER = {
    "user": "",
    "password": ""
}

speaker_id_dict = {}

def download_and_extract(directory, subset, urls):
    """Download and extract the given split of dataset.

    Args:
        directory: the directory where to put the downloaded data.
        subset: subset name of the corpus.
        urls: the list of urls to download the data file.
    """
    if not gfile.Exists(directory):
        gfile.MakeDirs(directory)

    try:
        for url in urls:
            zip_filepath = os.path.join(directory, url.split("/")[-1])
            if os.path.exists(zip_filepath):
                continue
            logging.info("Downloading %s to %s" % (url, zip_filepath))
            subprocess.call('wget %s --user %s --password %s -O %s' %
                            (url, USER["user"], USER["password"], zip_filepath), shell=True)

            statinfo = os.stat(zip_filepath)
            logging.info(
                "Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size)
            )

        # concatenate all parts into zip files
        if ".zip" not in zip_filepath:
            zip_filepath = "_".join(zip_filepath.split("_")[:-1])
            subprocess.call('cat %s* > %s.zip' %
                            (zip_filepath, zip_filepath), shell=True)
            zip_filepath += ".zip"
        extract_path = zip_filepath.strip(".zip")

        # check zip file md5sum
        md5 = hashlib.md5(open(zip_filepath, 'rb').read()).hexdigest()
        if md5 != MD5SUM[subset]:
            raise ValueError("md5sum of %s mismatch" % zip_filepath)

        with zipfile.ZipFile(zip_filepath, "r") as zfile:
            zfile.extractall(directory)
            extract_path_ori = os.path.join(directory, zfile.infolist()[0].filename)
            subprocess.call('mv %s %s' % (extract_path_ori, extract_path), shell=True)
    finally:
        # gfile.Remove(zip_filepath)
        pass


def exec_cmd(cmd):
    """Run a command in a subprocess.
    Args:
        cmd: command line to be executed.
    Return:
        int, the return code.
    """
    try:
        retcode = subprocess.call(cmd, shell=True)
        if retcode < 0:
            logging.info(f"Child was terminated by signal {retcode}")
    except OSError as e:
        logging.info(f"Execution failed: {e}")
        retcode = -999
    return retcode


def decode_aac_with_ffmpeg(aac_file, wav_file):
    """Decode a given AAC file into WAV using ffmpeg.
    Args:
        aac_file: file path to input AAC file.
        wav_file: file path to output WAV file.
    Return:
        bool, True if success.
    """
    cmd = f"ffmpeg -i {aac_file} {wav_file}"
    logging.info(f"Decoding aac file using command line: {cmd}")
    ret = exec_cmd(cmd)
    if ret != 0:
        logging.error(f"Failed to decode aac file with retcode {ret}")
        logging.error("Please check your ffmpeg installation.")
        return False
    return True


def convert_audio_and_make_label(input_dir, subset,
                                 output_dir, output_file):
    """Optionally convert AAC to WAV and make speaker labels.
    Args:
        input_dir: the directory which holds the input dataset.
        subset: the name of the specified subset. e.g. vox1_dev_wav
        output_dir: the directory to place the newly generated csv files.
        output_file: the name of the newly generated csv file. e.g. vox1_dev_wav.csv
    """

    logging.info("Preprocessing audio and label for subset %s" % subset)
    source_dir = os.path.join(input_dir, subset)

    files = []
    # Convert all AAC file into WAV format. At the same time, generate the csv
    for root, _, filenames in gfile.Walk(source_dir):
        for filename in filenames:
            name, ext = os.path.splitext(filename)
            if ext.lower() == ".wav":
                _, ext2 = (os.path.splitext(name))
                if ext2:
                    continue
                wav_file = os.path.join(root, filename)
            elif ext.lower() == ".m4a":
                # Convert AAC to WAV.
                aac_file = os.path.join(root, filename)
                wav_file = aac_file + ".wav"
                if not gfile.Exists(wav_file):
                    if not decode_aac_with_ffmpeg(aac_file, wav_file):
                        raise RuntimeError("Audio decoding failed.")
            else:
                continue
            speaker_name = root.split(os.path.sep)[-2]
            if speaker_name not in speaker_id_dict:
                num = len(speaker_id_dict)
                speaker_id_dict[speaker_name] = num
            # wav_filesize = os.path.getsize(wav_file)
            wav_length = len(sf.read(wav_file)[0])
            files.append(
                (os.path.abspath(wav_file), wav_length, speaker_id_dict[speaker_name], speaker_name)
            )

    # Write to CSV file which contains four columns:
    # "wav_filename", "wav_length_ms", "speaker_id", "speaker_name".
    csv_file_path = os.path.join(output_dir, output_file)
    df = pandas.DataFrame(
        data=files, columns=["wav_filename", "wav_length_ms", "speaker_id", "speaker_name"])
    df.to_csv(csv_file_path, index=False, sep="\t")
    logging.info("Successfully generated csv file {}".format(csv_file_path))


def processor(directory, subset, force_process):
    """ download and process """
    urls = SUBSETS
    if subset not in urls:
        raise ValueError(subset, "is not in voxceleb")

    subset_csv = os.path.join(directory, subset + '.csv')
    if not force_process and os.path.exists(subset_csv):
        return subset_csv

    logging.info("Downloading and process the voxceleb in %s", directory)
    logging.info("Preparing subset %s", subset)
    download_and_extract(directory, subset, urls[subset])
    convert_audio_and_make_label(
        directory,
        subset,
        directory,
        subset + ".csv"
    )
    logging.info("Finished downloading and processing")
    return subset_csv


if __name__ == "__main__":
    logging.set_verbosity(logging.INFO)
    if len(sys.argv) != 4:
        print("Usage: python prepare_data.py save_directory user password")
        sys.exit()

    DIR, USER["user"], USER["password"] = sys.argv[1], sys.argv[2], sys.argv[3]
    for SUBSET in SUBSETS:
        processor(DIR, SUBSET, False)