|
|
|
|
|
|
|
import argparse |
|
import glob |
|
import os |
|
import sys |
|
import time |
|
import traceback |
|
import numpy as np |
|
from random import randrange |
|
|
|
import torch |
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP_th |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
from TTS.tts.datasets.preprocess import load_meta_data |
|
from TTS.tts.datasets.TTSDataset import MyDataset |
|
from TTS.tts.layers.losses import SpeedySpeechLoss |
|
from TTS.tts.utils.generic_utils import check_config_tts, setup_model |
|
from TTS.tts.utils.io import save_best_model, save_checkpoint |
|
from TTS.tts.utils.measures import alignment_diagonal_score |
|
from TTS.tts.utils.speakers import parse_speakers |
|
from TTS.tts.utils.synthesis import synthesis |
|
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols |
|
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram |
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.utils.console_logger import ConsoleLogger |
|
from TTS.utils.distribute import init_distributed, reduce_tensor |
|
from TTS.utils.generic_utils import (KeepAverage, count_parameters, |
|
create_experiment_folder, get_git_branch, |
|
remove_experiment_folder, set_init_dict) |
|
from TTS.utils.io import copy_model_files, load_config |
|
from TTS.utils.radam import RAdam |
|
from TTS.utils.tensorboard_logger import TensorboardLogger |
|
from TTS.utils.training import NoamLR, setup_torch_training_env |
|
|
|
use_cuda, num_gpus = setup_torch_training_env(True, False) |
|
|
|
|
|
def setup_loader(ap, r, is_val=False, verbose=False): |
|
if is_val and not c.run_eval: |
|
loader = None |
|
else: |
|
dataset = MyDataset( |
|
r, |
|
c.text_cleaner, |
|
compute_linear_spec=False, |
|
meta_data=meta_data_eval if is_val else meta_data_train, |
|
ap=ap, |
|
tp=c.characters if 'characters' in c.keys() else None, |
|
add_blank=c['add_blank'] if 'add_blank' in c.keys() else False, |
|
batch_group_size=0 if is_val else c.batch_group_size * |
|
c.batch_size, |
|
min_seq_len=c.min_seq_len, |
|
max_seq_len=c.max_seq_len, |
|
phoneme_cache_path=c.phoneme_cache_path, |
|
use_phonemes=c.use_phonemes, |
|
phoneme_language=c.phoneme_language, |
|
enable_eos_bos=c.enable_eos_bos_chars, |
|
use_noise_augment=not is_val, |
|
verbose=verbose, |
|
speaker_mapping=speaker_mapping if c.use_speaker_embedding and c.use_external_speaker_embedding_file else None) |
|
|
|
if c.use_phonemes and c.compute_input_seq_cache: |
|
|
|
dataset.compute_input_seq(c.num_loader_workers) |
|
dataset.sort_items() |
|
|
|
sampler = DistributedSampler(dataset) if num_gpus > 1 else None |
|
loader = DataLoader( |
|
dataset, |
|
batch_size=c.eval_batch_size if is_val else c.batch_size, |
|
shuffle=False, |
|
collate_fn=dataset.collate_fn, |
|
drop_last=False, |
|
sampler=sampler, |
|
num_workers=c.num_val_loader_workers |
|
if is_val else c.num_loader_workers, |
|
pin_memory=False) |
|
return loader |
|
|
|
|
|
def format_data(data): |
|
|
|
text_input = data[0] |
|
text_lengths = data[1] |
|
speaker_names = data[2] |
|
mel_input = data[4].permute(0, 2, 1) |
|
mel_lengths = data[5] |
|
item_idx = data[7] |
|
attn_mask = data[9] |
|
avg_text_length = torch.mean(text_lengths.float()) |
|
avg_spec_length = torch.mean(mel_lengths.float()) |
|
|
|
if c.use_speaker_embedding: |
|
if c.use_external_speaker_embedding_file: |
|
|
|
speaker_c = data[8] |
|
else: |
|
|
|
speaker_c = [ |
|
speaker_mapping[speaker_name] for speaker_name in speaker_names |
|
] |
|
speaker_c = torch.LongTensor(speaker_c) |
|
else: |
|
speaker_c = None |
|
|
|
durations = torch.zeros(attn_mask.shape[0], attn_mask.shape[2]) |
|
for idx, am in enumerate(attn_mask): |
|
|
|
c_idxs = am[:, :text_lengths[idx], :mel_lengths[idx]].max(1)[1] |
|
|
|
c_idxs, counts = torch.unique(c_idxs, return_counts=True) |
|
dur = torch.ones([text_lengths[idx]]).to(counts.dtype) |
|
dur[c_idxs] = counts |
|
|
|
|
|
extra_frames = dur.sum() - mel_lengths[idx] |
|
largest_idxs = torch.argsort(-dur)[:extra_frames] |
|
dur[largest_idxs] -= 1 |
|
assert dur.sum() == mel_lengths[idx], f" [!] total duration {dur.sum()} vs spectrogram length {mel_lengths[idx]}" |
|
durations[idx, :text_lengths[idx]] = dur |
|
|
|
if use_cuda: |
|
text_input = text_input.cuda(non_blocking=True) |
|
text_lengths = text_lengths.cuda(non_blocking=True) |
|
mel_input = mel_input.cuda(non_blocking=True) |
|
mel_lengths = mel_lengths.cuda(non_blocking=True) |
|
if speaker_c is not None: |
|
speaker_c = speaker_c.cuda(non_blocking=True) |
|
attn_mask = attn_mask.cuda(non_blocking=True) |
|
durations = durations.cuda(non_blocking=True) |
|
return text_input, text_lengths, mel_input, mel_lengths, speaker_c,\ |
|
avg_text_length, avg_spec_length, attn_mask, durations, item_idx |
|
|
|
|
|
def train(data_loader, model, criterion, optimizer, scheduler, |
|
ap, global_step, epoch): |
|
|
|
model.train() |
|
epoch_time = 0 |
|
keep_avg = KeepAverage() |
|
if use_cuda: |
|
batch_n_iter = int( |
|
len(data_loader.dataset) / (c.batch_size * num_gpus)) |
|
else: |
|
batch_n_iter = int(len(data_loader.dataset) / c.batch_size) |
|
end_time = time.time() |
|
c_logger.print_train_start() |
|
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None |
|
for num_iter, data in enumerate(data_loader): |
|
start_time = time.time() |
|
|
|
|
|
text_input, text_lengths, mel_targets, mel_lengths, speaker_c,\ |
|
avg_text_length, avg_spec_length, _, dur_target, _ = format_data(data) |
|
|
|
loader_time = time.time() - end_time |
|
|
|
global_step += 1 |
|
optimizer.zero_grad() |
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=c.mixed_precision): |
|
decoder_output, dur_output, alignments = model.forward( |
|
text_input, text_lengths, mel_lengths, dur_target, g=speaker_c) |
|
|
|
|
|
loss_dict = criterion(decoder_output, mel_targets, mel_lengths, dur_output, torch.log(1 + dur_target), text_lengths) |
|
|
|
|
|
if c.mixed_precision: |
|
scaler.scale(loss_dict['loss']).backward() |
|
scaler.unscale_(optimizer) |
|
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), |
|
c.grad_clip) |
|
scaler.step(optimizer) |
|
scaler.update() |
|
else: |
|
loss_dict['loss'].backward() |
|
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), |
|
c.grad_clip) |
|
optimizer.step() |
|
|
|
|
|
if c.noam_schedule: |
|
scheduler.step() |
|
|
|
|
|
current_lr = optimizer.param_groups[0]['lr'] |
|
|
|
|
|
align_error = 1 - alignment_diagonal_score(alignments, binary=True) |
|
loss_dict['align_error'] = align_error |
|
|
|
step_time = time.time() - start_time |
|
epoch_time += step_time |
|
|
|
|
|
if num_gpus > 1: |
|
loss_dict['loss_l1'] = reduce_tensor(loss_dict['loss_l1'].data, num_gpus) |
|
loss_dict['loss_ssim'] = reduce_tensor(loss_dict['loss_ssim'].data, num_gpus) |
|
loss_dict['loss_dur'] = reduce_tensor(loss_dict['loss_dur'].data, num_gpus) |
|
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus) |
|
|
|
|
|
loss_dict_new = dict() |
|
for key, value in loss_dict.items(): |
|
if isinstance(value, (int, float)): |
|
loss_dict_new[key] = value |
|
else: |
|
loss_dict_new[key] = value.item() |
|
loss_dict = loss_dict_new |
|
|
|
|
|
update_train_values = dict() |
|
for key, value in loss_dict.items(): |
|
update_train_values['avg_' + key] = value |
|
update_train_values['avg_loader_time'] = loader_time |
|
update_train_values['avg_step_time'] = step_time |
|
keep_avg.update_values(update_train_values) |
|
|
|
|
|
if global_step % c.print_step == 0: |
|
log_dict = { |
|
|
|
"avg_spec_length": [avg_spec_length, 1], |
|
"avg_text_length": [avg_text_length, 1], |
|
"step_time": [step_time, 4], |
|
"loader_time": [loader_time, 2], |
|
"current_lr": current_lr, |
|
} |
|
c_logger.print_train_step(batch_n_iter, num_iter, global_step, |
|
log_dict, loss_dict, keep_avg.avg_values) |
|
|
|
if args.rank == 0: |
|
|
|
|
|
if global_step % c.tb_plot_step == 0: |
|
iter_stats = { |
|
"lr": current_lr, |
|
"grad_norm": grad_norm, |
|
"step_time": step_time |
|
} |
|
iter_stats.update(loss_dict) |
|
tb_logger.tb_train_iter_stats(global_step, iter_stats) |
|
|
|
if global_step % c.save_step == 0: |
|
if c.checkpoint: |
|
|
|
save_checkpoint(model, optimizer, global_step, epoch, 1, OUT_PATH, |
|
model_loss=loss_dict['loss']) |
|
|
|
|
|
torch.cuda.synchronize() |
|
|
|
|
|
idx = np.random.randint(mel_targets.shape[0]) |
|
pred_spec = decoder_output[idx].detach().data.cpu().numpy().T |
|
gt_spec = mel_targets[idx].data.cpu().numpy().T |
|
align_img = alignments[idx].data.cpu() |
|
|
|
figures = { |
|
"prediction": plot_spectrogram(pred_spec, ap), |
|
"ground_truth": plot_spectrogram(gt_spec, ap), |
|
"alignment": plot_alignment(align_img), |
|
} |
|
|
|
tb_logger.tb_train_figures(global_step, figures) |
|
|
|
|
|
train_audio = ap.inv_melspectrogram(pred_spec.T) |
|
tb_logger.tb_train_audios(global_step, |
|
{'TrainAudio': train_audio}, |
|
c.audio["sample_rate"]) |
|
end_time = time.time() |
|
|
|
|
|
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg) |
|
|
|
|
|
if args.rank == 0: |
|
epoch_stats = {"epoch_time": epoch_time} |
|
epoch_stats.update(keep_avg.avg_values) |
|
tb_logger.tb_train_epoch_stats(global_step, epoch_stats) |
|
if c.tb_model_param_stats: |
|
tb_logger.tb_model_weights(model, global_step) |
|
return keep_avg.avg_values, global_step |
|
|
|
|
|
@torch.no_grad() |
|
def evaluate(data_loader, model, criterion, ap, global_step, epoch): |
|
model.eval() |
|
epoch_time = 0 |
|
keep_avg = KeepAverage() |
|
c_logger.print_eval_start() |
|
if data_loader is not None: |
|
for num_iter, data in enumerate(data_loader): |
|
start_time = time.time() |
|
|
|
|
|
text_input, text_lengths, mel_targets, mel_lengths, speaker_c,\ |
|
_, _, _, dur_target, _ = format_data(data) |
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=c.mixed_precision): |
|
decoder_output, dur_output, alignments = model.forward( |
|
text_input, text_lengths, mel_lengths, dur_target, g=speaker_c) |
|
|
|
|
|
loss_dict = criterion(decoder_output, mel_targets, mel_lengths, dur_output, torch.log(1 + dur_target), text_lengths) |
|
|
|
|
|
step_time = time.time() - start_time |
|
epoch_time += step_time |
|
|
|
|
|
align_error = 1 - alignment_diagonal_score(alignments, binary=True) |
|
loss_dict['align_error'] = align_error |
|
|
|
|
|
if num_gpus > 1: |
|
loss_dict['loss_l1'] = reduce_tensor(loss_dict['loss_l1'].data, num_gpus) |
|
loss_dict['loss_ssim'] = reduce_tensor(loss_dict['loss_ssim'].data, num_gpus) |
|
loss_dict['loss_dur'] = reduce_tensor(loss_dict['loss_dur'].data, num_gpus) |
|
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus) |
|
|
|
|
|
loss_dict_new = dict() |
|
for key, value in loss_dict.items(): |
|
if isinstance(value, (int, float)): |
|
loss_dict_new[key] = value |
|
else: |
|
loss_dict_new[key] = value.item() |
|
loss_dict = loss_dict_new |
|
|
|
|
|
update_train_values = dict() |
|
for key, value in loss_dict.items(): |
|
update_train_values['avg_' + key] = value |
|
keep_avg.update_values(update_train_values) |
|
|
|
if c.print_eval: |
|
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values) |
|
|
|
if args.rank == 0: |
|
|
|
idx = np.random.randint(mel_targets.shape[0]) |
|
pred_spec = decoder_output[idx].detach().data.cpu().numpy().T |
|
gt_spec = mel_targets[idx].data.cpu().numpy().T |
|
align_img = alignments[idx].data.cpu() |
|
|
|
eval_figures = { |
|
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False), |
|
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), |
|
"alignment": plot_alignment(align_img, output_fig=False) |
|
} |
|
|
|
|
|
eval_audio = ap.inv_melspectrogram(pred_spec.T) |
|
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, |
|
c.audio["sample_rate"]) |
|
|
|
|
|
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values) |
|
tb_logger.tb_eval_figures(global_step, eval_figures) |
|
|
|
if args.rank == 0 and epoch >= c.test_delay_epochs: |
|
if c.test_sentences_file is None: |
|
test_sentences = [ |
|
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", |
|
"Be a voice, not an echo.", |
|
"I'm sorry Dave. I'm afraid I can't do that.", |
|
"This cake is great. It's so delicious and moist.", |
|
"Prior to November 22, 1963." |
|
] |
|
else: |
|
with open(c.test_sentences_file, "r") as f: |
|
test_sentences = [s.strip() for s in f.readlines()] |
|
|
|
|
|
test_audios = {} |
|
test_figures = {} |
|
print(" | > Synthesizing test sentences") |
|
if c.use_speaker_embedding: |
|
if c.use_external_speaker_embedding_file: |
|
speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding'] |
|
speaker_id = None |
|
else: |
|
speaker_id = 0 |
|
speaker_embedding = None |
|
else: |
|
speaker_id = None |
|
speaker_embedding = None |
|
|
|
style_wav = c.get("style_wav_for_test") |
|
for idx, test_sentence in enumerate(test_sentences): |
|
try: |
|
wav, alignment, _, postnet_output, _, _ = synthesis( |
|
model, |
|
test_sentence, |
|
c, |
|
use_cuda, |
|
ap, |
|
speaker_id=speaker_id, |
|
speaker_embedding=speaker_embedding, |
|
style_wav=style_wav, |
|
truncated=False, |
|
enable_eos_bos_chars=c.enable_eos_bos_chars, |
|
use_griffin_lim=True, |
|
do_trim_silence=False) |
|
|
|
file_path = os.path.join(AUDIO_PATH, str(global_step)) |
|
os.makedirs(file_path, exist_ok=True) |
|
file_path = os.path.join(file_path, |
|
"TestSentence_{}.wav".format(idx)) |
|
ap.save_wav(wav, file_path) |
|
test_audios['{}-audio'.format(idx)] = wav |
|
test_figures['{}-prediction'.format(idx)] = plot_spectrogram( |
|
postnet_output, ap) |
|
test_figures['{}-alignment'.format(idx)] = plot_alignment( |
|
alignment) |
|
except: |
|
print(" !! Error creating Test Sentence -", idx) |
|
traceback.print_exc() |
|
tb_logger.tb_test_audios(global_step, test_audios, |
|
c.audio['sample_rate']) |
|
tb_logger.tb_test_figures(global_step, test_figures) |
|
return keep_avg.avg_values |
|
|
|
|
|
|
|
def main(args): |
|
|
|
global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping |
|
|
|
ap = AudioProcessor(**c.audio) |
|
if 'characters' in c.keys(): |
|
symbols, phonemes = make_symbols(**c.characters) |
|
|
|
|
|
if num_gpus > 1: |
|
init_distributed(args.rank, num_gpus, args.group_id, |
|
c.distributed["backend"], c.distributed["url"]) |
|
num_chars = len(phonemes) if c.use_phonemes else len(symbols) |
|
|
|
|
|
meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=True) |
|
|
|
|
|
if 'train_portion' in c.keys(): |
|
meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)] |
|
if 'eval_portion' in c.keys(): |
|
meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)] |
|
|
|
|
|
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH) |
|
|
|
|
|
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim=speaker_embedding_dim) |
|
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9) |
|
criterion = SpeedySpeechLoss(c) |
|
|
|
if args.restore_path: |
|
checkpoint = torch.load(args.restore_path, map_location='cpu') |
|
try: |
|
|
|
|
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
if c.reinit_layers: |
|
raise RuntimeError |
|
model.load_state_dict(checkpoint['model']) |
|
except: |
|
print(" > Partial model initialization.") |
|
model_dict = model.state_dict() |
|
model_dict = set_init_dict(model_dict, checkpoint['model'], c) |
|
model.load_state_dict(model_dict) |
|
del model_dict |
|
|
|
for group in optimizer.param_groups: |
|
group['initial_lr'] = c.lr |
|
print(" > Model restored from step %d" % checkpoint['step'], |
|
flush=True) |
|
args.restore_step = checkpoint['step'] |
|
else: |
|
args.restore_step = 0 |
|
|
|
if use_cuda: |
|
model.cuda() |
|
criterion.cuda() |
|
|
|
|
|
if num_gpus > 1: |
|
model = DDP_th(model, device_ids=[args.rank]) |
|
|
|
if c.noam_schedule: |
|
scheduler = NoamLR(optimizer, |
|
warmup_steps=c.warmup_steps, |
|
last_epoch=args.restore_step - 1) |
|
else: |
|
scheduler = None |
|
|
|
num_params = count_parameters(model) |
|
print("\n > Model has {} parameters".format(num_params), flush=True) |
|
|
|
if 'best_loss' not in locals(): |
|
best_loss = float('inf') |
|
|
|
|
|
train_loader = setup_loader(ap, 1, is_val=False, verbose=True) |
|
eval_loader = setup_loader(ap, 1, is_val=True, verbose=True) |
|
|
|
global_step = args.restore_step |
|
for epoch in range(0, c.epochs): |
|
c_logger.print_epoch_start(epoch, c.epochs) |
|
train_avg_loss_dict, global_step = train(train_loader, model, criterion, optimizer, |
|
scheduler, ap, global_step, |
|
epoch) |
|
eval_avg_loss_dict = evaluate(eval_loader , model, criterion, ap, global_step, epoch) |
|
c_logger.print_epoch_end(epoch, eval_avg_loss_dict) |
|
target_loss = train_avg_loss_dict['avg_loss'] |
|
if c.run_eval: |
|
target_loss = eval_avg_loss_dict['avg_loss'] |
|
best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r, |
|
OUT_PATH) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'--continue_path', |
|
type=str, |
|
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.', |
|
default='', |
|
required='--config_path' not in sys.argv) |
|
parser.add_argument( |
|
'--restore_path', |
|
type=str, |
|
help='Model file to be restored. Use to finetune a model.', |
|
default='') |
|
parser.add_argument( |
|
'--config_path', |
|
type=str, |
|
help='Path to config file for training.', |
|
required='--continue_path' not in sys.argv |
|
) |
|
parser.add_argument('--debug', |
|
type=bool, |
|
default=False, |
|
help='Do not verify commit integrity to run training.') |
|
|
|
|
|
parser.add_argument( |
|
'--rank', |
|
type=int, |
|
default=0, |
|
help='DISTRIBUTED: process rank for distributed training.') |
|
parser.add_argument('--group_id', |
|
type=str, |
|
default="", |
|
help='DISTRIBUTED: process group id.') |
|
args = parser.parse_args() |
|
|
|
if args.continue_path != '': |
|
args.output_path = args.continue_path |
|
args.config_path = os.path.join(args.continue_path, 'config.json') |
|
list_of_files = glob.glob(args.continue_path + "/*.pth.tar") |
|
latest_model_file = max(list_of_files, key=os.path.getctime) |
|
args.restore_path = latest_model_file |
|
print(f" > Training continues for {args.restore_path}") |
|
|
|
|
|
c = load_config(args.config_path) |
|
|
|
check_config_tts(c) |
|
_ = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
if c.mixed_precision: |
|
print(" > Mixed precision enabled.") |
|
|
|
OUT_PATH = args.continue_path |
|
if args.continue_path == '': |
|
OUT_PATH = create_experiment_folder(c.output_path, c.run_name, args.debug) |
|
|
|
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios') |
|
|
|
c_logger = ConsoleLogger() |
|
|
|
if args.rank == 0: |
|
os.makedirs(AUDIO_PATH, exist_ok=True) |
|
new_fields = {} |
|
if args.restore_path: |
|
new_fields["restore_path"] = args.restore_path |
|
new_fields["github_branch"] = get_git_branch() |
|
copy_model_files(c, args.config_path, OUT_PATH, new_fields) |
|
os.chmod(AUDIO_PATH, 0o775) |
|
os.chmod(OUT_PATH, 0o775) |
|
|
|
LOG_DIR = OUT_PATH |
|
tb_logger = TensorboardLogger(LOG_DIR, model_name='TTS') |
|
|
|
|
|
tb_logger.tb_add_text('model-description', c['run_description'], 0) |
|
|
|
try: |
|
main(args) |
|
except KeyboardInterrupt: |
|
remove_experiment_folder(OUT_PATH) |
|
try: |
|
sys.exit(0) |
|
except SystemExit: |
|
os._exit(0) |
|
except Exception: |
|
remove_experiment_folder(OUT_PATH) |
|
traceback.print_exc() |
|
sys.exit(1) |
|
|