voice-xtts2 / TTS /bin /synthesize.py
antoniomae1234's picture
changes in flenema
2493d72 verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import sys
import string
from argparse import RawTextHelpFormatter
# pylint: disable=redefined-outer-name, unused-argument
from pathlib import Path
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
if v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
raise argparse.ArgumentTypeError('Boolean value expected.')
def main():
# pylint: disable=bad-continuation
parser = argparse.ArgumentParser(description='''Synthesize speech on command line.\n\n'''
'''You can either use your trained model or choose a model from the provided list.\n'''\
'''
Example runs:
# list provided models
./TTS/bin/synthesize.py --list_models
# run a model from the list
./TTS/bin/synthesize.py --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>" --vocoder_name "<language>/<dataset>/<model_name>" --output_path
# run your own TTS model (Using Griffin-Lim Vocoder)
./TTS/bin/synthesize.py --text "Text for TTS" --model_path path/to/model.pth.tar --config_path path/to/config.json --out_path output/path/speech.wav
# run your own TTS and Vocoder models
./TTS/bin/synthesize.py --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth.tar --out_path output/path/speech.wav
--vocoder_path path/to/vocoder.pth.tar --vocoder_config_path path/to/vocoder_config.json
''',
formatter_class=RawTextHelpFormatter)
parser.add_argument(
'--list_models',
type=str2bool,
nargs='?',
const=True,
default=False,
help='list available pre-trained tts and vocoder models.'
)
parser.add_argument(
'--text',
type=str,
default=None,
help='Text to generate speech.'
)
# Args for running pre-trained TTS models.
parser.add_argument(
'--model_name',
type=str,
default=None,
help=
'Name of one of the pre-trained tts models in format <language>/<dataset>/<model_name>'
)
parser.add_argument(
'--vocoder_name',
type=str,
default=None,
help=
'Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>'
)
# Args for running custom models
parser.add_argument(
'--config_path',
default=None,
type=str,
help='Path to model config file.'
)
parser.add_argument(
'--model_path',
type=str,
default=None,
help='Path to model file.',
)
parser.add_argument(
'--out_path',
type=str,
default=Path(__file__).resolve().parent,
help='Path to save final wav file. Wav file will be named as the given text.',
)
parser.add_argument(
'--use_cuda',
type=bool,
help='Run model on CUDA.',
default=False
)
parser.add_argument(
'--vocoder_path',
type=str,
help=
'Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).',
default=None,
)
parser.add_argument(
'--vocoder_config_path',
type=str,
help='Path to vocoder model config file.',
default=None)
# args for multi-speaker synthesis
parser.add_argument(
'--speakers_json',
type=str,
help="JSON file for multi-speaker model.",
default=None)
parser.add_argument(
'--speaker_idx',
type=str,
help="if the tts model is trained with x-vectors, then speaker_idx is a file present in speakers.json else speaker_idx is the speaker id corresponding to a speaker in the speaker embedding layer.",
default=None)
parser.add_argument(
'--gst_style',
help="Wav path file for GST stylereference.",
default=None)
# aux args
parser.add_argument(
'--save_spectogram',
type=bool,
help="If true save raw spectogram for further (vocoder) processing in out_path.",
default=False)
args = parser.parse_args()
# load model manager
path = Path(__file__).parent / "../.models.json"
manager = ModelManager(path)
model_path = None
config_path = None
vocoder_path = None
vocoder_config_path = None
# CASE1: list pre-trained TTS models
if args.list_models:
manager.list_models()
sys.exit()
# CASE2: load pre-trained models
if args.model_name is not None:
model_path, config_path = manager.download_model(args.model_name)
if args.vocoder_name is not None:
vocoder_path, vocoder_config_path = manager.download_model(args.vocoder_name)
# CASE3: load custome models
if args.model_path is not None:
model_path = args.model_path
config_path = args.config_path
if args.vocoder_path is not None:
vocoder_path = args.vocoder_path
vocoder_config_path = args.vocoder_config_path
# RUN THE SYNTHESIS
# load models
synthesizer = Synthesizer(model_path, config_path, vocoder_path, vocoder_config_path, args.use_cuda)
use_griffin_lim = vocoder_path is None
print(" > Text: {}".format(args.text))
# # handle multi-speaker setting
# if not model_config.use_external_speaker_embedding_file and args.speaker_idx is not None:
# if args.speaker_idx.isdigit():
# args.speaker_idx = int(args.speaker_idx)
# else:
# args.speaker_idx = None
# else:
# args.speaker_idx = None
# if args.gst_style is None:
# if 'gst' in model_config.keys() and model_config.gst['gst_style_input'] is not None:
# gst_style = model_config.gst['gst_style_input']
# else:
# gst_style = None
# else:
# # check if gst_style string is a dict, if is dict convert else use string
# try:
# gst_style = json.loads(args.gst_style)
# if max(map(int, gst_style.keys())) >= model_config.gst['gst_style_tokens']:
# raise RuntimeError("The highest value of the gst_style dictionary key must be less than the number of GST Tokens, \n Highest dictionary key value: {} \n Number of GST tokens: {}".format(max(map(int, gst_style.keys())), model_config.gst['gst_style_tokens']))
# except ValueError:
# gst_style = args.gst_style
# kick it
wav = synthesizer.tts(args.text)
# save the results
file_name = args.text.replace(" ", "_")[0:20]
file_name = file_name.translate(
str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
out_path = os.path.join(args.out_path, file_name)
print(" > Saving output to {}".format(out_path))
synthesizer.save_wav(wav, out_path)
if __name__ == "__main__":
main()