File size: 7,107 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import argparse
import os
import sys
import string
from argparse import RawTextHelpFormatter
# pylint: disable=redefined-outer-name, unused-argument
from pathlib import Path

from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer


def str2bool(v):
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    if v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    raise argparse.ArgumentTypeError('Boolean value expected.')


def main():
    # pylint: disable=bad-continuation
    parser = argparse.ArgumentParser(description='''Synthesize speech on command line.\n\n'''

    '''You can either use your trained model or choose a model from the provided list.\n'''\

    '''
    Example runs:

    # list provided models
    ./TTS/bin/synthesize.py --list_models

    # run a model from the list
    ./TTS/bin/synthesize.py --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>" --vocoder_name "<language>/<dataset>/<model_name>" --output_path

    # run your own TTS model (Using Griffin-Lim Vocoder)
    ./TTS/bin/synthesize.py --text "Text for TTS" --model_path path/to/model.pth.tar --config_path path/to/config.json --out_path output/path/speech.wav

    # run your own TTS and Vocoder models
    ./TTS/bin/synthesize.py --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth.tar --out_path output/path/speech.wav
        --vocoder_path path/to/vocoder.pth.tar --vocoder_config_path path/to/vocoder_config.json

    ''',
        formatter_class=RawTextHelpFormatter)

    parser.add_argument(
        '--list_models',
        type=str2bool,
        nargs='?',
        const=True,
        default=False,
        help='list available pre-trained tts and vocoder models.'
        )
    parser.add_argument(
        '--text',
        type=str,
        default=None,
        help='Text to generate speech.'
        )

    # Args for running pre-trained TTS models.
    parser.add_argument(
        '--model_name',
        type=str,
        default=None,
        help=
        'Name of one of the pre-trained tts models in format <language>/<dataset>/<model_name>'
    )
    parser.add_argument(
        '--vocoder_name',
        type=str,
        default=None,
        help=
        'Name of one of the pre-trained  vocoder models in format <language>/<dataset>/<model_name>'
    )

    # Args for running custom models
    parser.add_argument(
        '--config_path',
        default=None,
        type=str,
        help='Path to model config file.'
        )
    parser.add_argument(
        '--model_path',
        type=str,
        default=None,
        help='Path to model file.',
    )
    parser.add_argument(
        '--out_path',
        type=str,
        default=Path(__file__).resolve().parent,
        help='Path to save final wav file. Wav file will be named as the given text.',
    )
    parser.add_argument(
        '--use_cuda',
        type=bool,
        help='Run model on CUDA.',
        default=False
        )
    parser.add_argument(
        '--vocoder_path',
        type=str,
        help=
        'Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).',
        default=None,
    )
    parser.add_argument(
        '--vocoder_config_path',
        type=str,
        help='Path to vocoder model config file.',
        default=None)

    # args for multi-speaker synthesis
    parser.add_argument(
        '--speakers_json',
        type=str,
        help="JSON file for multi-speaker model.",
        default=None)
    parser.add_argument(
        '--speaker_idx',
        type=str,
        help="if the tts model is trained with x-vectors, then speaker_idx is a file present in speakers.json else speaker_idx is the speaker id corresponding to a speaker in the speaker embedding layer.",
        default=None)
    parser.add_argument(
        '--gst_style',
        help="Wav path file for GST stylereference.",
        default=None)

    # aux args
    parser.add_argument(
        '--save_spectogram',
        type=bool,
        help="If true save raw spectogram for further (vocoder) processing in out_path.",
        default=False)

    args = parser.parse_args()

    # load model manager
    path = Path(__file__).parent / "../.models.json"
    manager = ModelManager(path)

    model_path = None
    config_path = None
    vocoder_path = None
    vocoder_config_path = None

    # CASE1: list pre-trained TTS models
    if args.list_models:
        manager.list_models()
        sys.exit()

    # CASE2: load pre-trained models
    if args.model_name is not None:
        model_path, config_path = manager.download_model(args.model_name)

    if args.vocoder_name is not None:
        vocoder_path, vocoder_config_path = manager.download_model(args.vocoder_name)

    # CASE3: load custome models
    if args.model_path is not None:
        model_path = args.model_path
        config_path = args.config_path

    if args.vocoder_path is not None:
        vocoder_path = args.vocoder_path
        vocoder_config_path = args.vocoder_config_path

    # RUN THE SYNTHESIS
    # load models
    synthesizer = Synthesizer(model_path, config_path, vocoder_path, vocoder_config_path, args.use_cuda)

    use_griffin_lim = vocoder_path is None
    print(" > Text: {}".format(args.text))

    # # handle multi-speaker setting
    # if not model_config.use_external_speaker_embedding_file and args.speaker_idx is not None:
    #     if args.speaker_idx.isdigit():
    #         args.speaker_idx = int(args.speaker_idx)
    #     else:
    #         args.speaker_idx = None
    # else:
    #     args.speaker_idx = None

    # if args.gst_style is None:
    #     if 'gst' in model_config.keys() and model_config.gst['gst_style_input'] is not None:
    #         gst_style = model_config.gst['gst_style_input']
    #     else:
    #         gst_style = None
    # else:
    #     # check if gst_style string is a dict, if is dict convert  else use string
    #     try:
    #         gst_style = json.loads(args.gst_style)
    #         if max(map(int, gst_style.keys())) >= model_config.gst['gst_style_tokens']:
    #             raise RuntimeError("The highest value of the gst_style dictionary key must be less than the number of GST Tokens, \n Highest dictionary key value: {} \n Number of GST tokens: {}".format(max(map(int, gst_style.keys())), model_config.gst['gst_style_tokens']))
    #     except ValueError:
    #         gst_style = args.gst_style

    # kick it
    wav = synthesizer.tts(args.text)

    # save the results
    file_name = args.text.replace(" ", "_")[0:20]
    file_name = file_name.translate(
        str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
    out_path = os.path.join(args.out_path, file_name)
    print(" > Saving output to {}".format(out_path))
    synthesizer.save_wav(wav, out_path)


if __name__ == "__main__":
    main()