File size: 4,927 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is a noteboook used to generate the speaker embeddings with the AngleProto speaker encoder model for multi-speaker training.\n",
    "\n",
    "Before running this script please DON'T FORGET: \n",
    "- to set file paths.\n",
    "- to download related model files from TTS.\n",
    "- download or clone related repos, linked below.\n",
    "- setup the repositories. ```python setup.py install```\n",
    "- to checkout right commit versions (given next to the model) of TTS.\n",
    "- to set the right paths in the cell below.\n",
    "\n",
    "Repository:\n",
    "- TTS: https://github.com/mozilla/TTS"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "import os\n",
    "import importlib\n",
    "import random\n",
    "import librosa\n",
    "import torch\n",
    "\n",
    "import numpy as np\n",
    "from tqdm import tqdm\n",
    "from TTS.tts.utils.speakers import save_speaker_mapping, load_speaker_mapping\n",
    "\n",
    "# you may need to change this depending on your system\n",
    "os.environ['CUDA_VISIBLE_DEVICES']='0'\n",
    "\n",
    "\n",
    "from TTS.tts.utils.speakers import save_speaker_mapping, load_speaker_mapping\n",
    "from TTS.utils.audio import AudioProcessor\n",
    "from TTS.utils.io import load_config"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You should also adjust all the path constants to point at the relevant locations for you locally"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "MODEL_RUN_PATH = \"../../Mozilla-TTS/checkpoints/libritts_100+360-angleproto-June-06-2020_04+12PM-9c04d1f/\"\n",
    "MODEL_PATH = MODEL_RUN_PATH + \"best_model.pth.tar\"\n",
    "CONFIG_PATH = MODEL_RUN_PATH + \"config.json\"\n",
    "\n",
    "\n",
    "DATASETS_NAME = ['vctk'] # list the datasets\n",
    "DATASETS_PATH = ['../../../datasets/VCTK/']\n",
    "DATASETS_METAFILE = ['']\n",
    "\n",
    "USE_CUDA = True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Preprocess dataset\n",
    "meta_data = []\n",
    "for i in range(len(DATASETS_NAME)):\n",
    "    preprocessor = importlib.import_module('TTS.tts.datasets.preprocess')\n",
    "    preprocessor = getattr(preprocessor, DATASETS_NAME[i].lower())\n",
    "    meta_data += preprocessor(DATASETS_PATH[i],DATASETS_METAFILE[i])\n",
    "      \n",
    "meta_data= list(meta_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "c = load_config(CONFIG_PATH)\n",
    "ap = AudioProcessor(**c['audio'])\n",
    "\n",
    "model = SpeakerEncoder(**c.model)\n",
    "model.load_state_dict(torch.load(MODEL_PATH)['model'])\n",
    "model.eval()\n",
    "if USE_CUDA:\n",
    "    model.cuda()\n",
    "\n",
    "embeddings_dict = {}\n",
    "len_meta_data= len(meta_data)\n",
    "\n",
    "for i in tqdm(range(len_meta_data)):\n",
    "    _, wav_file, speaker_id = meta_data[i]\n",
    "    wav_file_name = os.path.basename(wav_file)\n",
    "    mel_spec = ap.melspectrogram(ap.load_wav(wav_file)).T\n",
    "    mel_spec = torch.FloatTensor(mel_spec[None, :, :])\n",
    "    if USE_CUDA:\n",
    "        mel_spec = mel_spec.cuda()\n",
    "    embedd = model.compute_embedding(mel_spec).cpu().detach().numpy().reshape(-1)\n",
    "    embeddings_dict[wav_file_name] = [embedd,speaker_id]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create and export speakers.json\n",
    "speaker_mapping = {sample: {'name': embeddings_dict[sample][1], 'embedding':embeddings_dict[sample][0].reshape(-1).tolist()} for i, sample in enumerate(embeddings_dict.keys())}\n",
    "save_speaker_mapping(MODEL_RUN_PATH, speaker_mapping)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#test load integrity\n",
    "speaker_mapping_load = load_speaker_mapping(MODEL_RUN_PATH)\n",
    "assert speaker_mapping == speaker_mapping_load\n",
    "print(\"The file speakers.json has been exported to \",MODEL_RUN_PATH, ' with ', len(embeddings_dict.keys()), ' speakers')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}