File size: 17,513 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import re
import torch
import importlib
import numpy as np
from collections import Counter

from TTS.utils.generic_utils import check_argument


def split_dataset(items):
    speakers = [item[-1] for item in items]
    is_multi_speaker = len(set(speakers)) > 1
    eval_split_size = min(500, int(len(items) * 0.01))
    assert eval_split_size > 0, " [!] You do not have enough samples to train. You need at least 100 samples."
    np.random.seed(0)
    np.random.shuffle(items)
    if is_multi_speaker:
        items_eval = []
        speakers = [item[-1] for item in items]
        speaker_counter = Counter(speakers)
        while len(items_eval) < eval_split_size:
            item_idx = np.random.randint(0, len(items))
            speaker_to_be_removed = items[item_idx][-1]
            if speaker_counter[speaker_to_be_removed] > 1:
                items_eval.append(items[item_idx])
                speaker_counter[speaker_to_be_removed] -= 1
                del items[item_idx]
        return items_eval, items
    return items[:eval_split_size], items[eval_split_size:]

# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def sequence_mask(sequence_length, max_len=None):
    if max_len is None:
        max_len = sequence_length.data.max()
    seq_range = torch.arange(max_len,
                             dtype=sequence_length.dtype,
                             device=sequence_length.device)
    # B x T_max
    return seq_range.unsqueeze(0) < sequence_length.unsqueeze(1)


def to_camel(text):
    text = text.capitalize()
    return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text)


def setup_model(num_chars, num_speakers, c, speaker_embedding_dim=None):
    print(" > Using model: {}".format(c.model))
    MyModel = importlib.import_module('TTS.tts.models.' + c.model.lower())
    MyModel = getattr(MyModel, to_camel(c.model))
    if c.model.lower() in "tacotron":
        model = MyModel(num_chars=num_chars + getattr(c, "add_blank", False),
                        num_speakers=num_speakers,
                        r=c.r,
                        postnet_output_dim=int(c.audio['fft_size'] / 2 + 1),
                        decoder_output_dim=c.audio['num_mels'],
                        gst=c.use_gst,
                        gst_embedding_dim=c.gst['gst_embedding_dim'],
                        gst_num_heads=c.gst['gst_num_heads'],
                        gst_style_tokens=c.gst['gst_style_tokens'],
                        gst_use_speaker_embedding=c.gst['gst_use_speaker_embedding'],
                        memory_size=c.memory_size,
                        attn_type=c.attention_type,
                        attn_win=c.windowing,
                        attn_norm=c.attention_norm,
                        prenet_type=c.prenet_type,
                        prenet_dropout=c.prenet_dropout,
                        forward_attn=c.use_forward_attn,
                        trans_agent=c.transition_agent,
                        forward_attn_mask=c.forward_attn_mask,
                        location_attn=c.location_attn,
                        attn_K=c.attention_heads,
                        separate_stopnet=c.separate_stopnet,
                        bidirectional_decoder=c.bidirectional_decoder,
                        double_decoder_consistency=c.double_decoder_consistency,
                        ddc_r=c.ddc_r,
                        speaker_embedding_dim=speaker_embedding_dim)
    elif c.model.lower() == "tacotron2":
        model = MyModel(num_chars=num_chars + getattr(c, "add_blank", False),
                        num_speakers=num_speakers,
                        r=c.r,
                        postnet_output_dim=c.audio['num_mels'],
                        decoder_output_dim=c.audio['num_mels'],
                        gst=c.use_gst,
                        gst_embedding_dim=c.gst['gst_embedding_dim'],
                        gst_num_heads=c.gst['gst_num_heads'],
                        gst_style_tokens=c.gst['gst_style_tokens'],
                        gst_use_speaker_embedding=c.gst['gst_use_speaker_embedding'],
                        attn_type=c.attention_type,
                        attn_win=c.windowing,
                        attn_norm=c.attention_norm,
                        prenet_type=c.prenet_type,
                        prenet_dropout=c.prenet_dropout,
                        forward_attn=c.use_forward_attn,
                        trans_agent=c.transition_agent,
                        forward_attn_mask=c.forward_attn_mask,
                        location_attn=c.location_attn,
                        attn_K=c.attention_heads,
                        separate_stopnet=c.separate_stopnet,
                        bidirectional_decoder=c.bidirectional_decoder,
                        double_decoder_consistency=c.double_decoder_consistency,
                        ddc_r=c.ddc_r,
                        speaker_embedding_dim=speaker_embedding_dim)
    elif c.model.lower() == "glow_tts":
        model = MyModel(num_chars=num_chars + getattr(c, "add_blank", False),
                        hidden_channels_enc=c['hidden_channels_encoder'],
                        hidden_channels_dec=c['hidden_channels_decoder'],
                        hidden_channels_dp=c['hidden_channels_duration_predictor'],
                        out_channels=c.audio['num_mels'],
                        encoder_type=c.encoder_type,
                        encoder_params=c.encoder_params,
                        use_encoder_prenet=c["use_encoder_prenet"],
                        num_flow_blocks_dec=12,
                        kernel_size_dec=5,
                        dilation_rate=1,
                        num_block_layers=4,
                        dropout_p_dec=0.05,
                        num_speakers=num_speakers,
                        c_in_channels=0,
                        num_splits=4,
                        num_squeeze=2,
                        sigmoid_scale=False,
                        mean_only=True,
                        external_speaker_embedding_dim=speaker_embedding_dim)
    elif c.model.lower() == "speedy_speech":
        model = MyModel(num_chars=num_chars + getattr(c, "add_blank", False),
                        out_channels=c.audio['num_mels'],
                        hidden_channels=c['hidden_channels'],
                        positional_encoding=c['positional_encoding'],
                        encoder_type=c['encoder_type'],
                        encoder_params=c['encoder_params'],
                        decoder_type=c['decoder_type'],
                        decoder_params=c['decoder_params'],
                        c_in_channels=0)
    return model

def is_tacotron(c):
    return False if c['model'] in ['speedy_speech', 'glow_tts'] else True

def check_config_tts(c):
    check_argument('model', c, enum_list=['tacotron', 'tacotron2', 'glow_tts', 'speedy_speech'], restricted=True, val_type=str)
    check_argument('run_name', c, restricted=True, val_type=str)
    check_argument('run_description', c, val_type=str)

    # AUDIO
    check_argument('audio', c, restricted=True, val_type=dict)

    # audio processing parameters
    check_argument('num_mels', c['audio'], restricted=True, val_type=int, min_val=10, max_val=2056)
    check_argument('fft_size', c['audio'], restricted=True, val_type=int, min_val=128, max_val=4058)
    check_argument('sample_rate', c['audio'], restricted=True, val_type=int, min_val=512, max_val=100000)
    check_argument('frame_length_ms', c['audio'], restricted=True, val_type=float, min_val=10, max_val=1000, alternative='win_length')
    check_argument('frame_shift_ms', c['audio'], restricted=True, val_type=float, min_val=1, max_val=1000, alternative='hop_length')
    check_argument('preemphasis', c['audio'], restricted=True, val_type=float, min_val=0, max_val=1)
    check_argument('min_level_db', c['audio'], restricted=True, val_type=int, min_val=-1000, max_val=10)
    check_argument('ref_level_db', c['audio'], restricted=True, val_type=int, min_val=0, max_val=1000)
    check_argument('power', c['audio'], restricted=True, val_type=float, min_val=1, max_val=5)
    check_argument('griffin_lim_iters', c['audio'], restricted=True, val_type=int, min_val=10, max_val=1000)

    # vocabulary parameters
    check_argument('characters', c, restricted=False, val_type=dict)
    check_argument('pad', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
    check_argument('eos', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
    check_argument('bos', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
    check_argument('characters', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
    check_argument('phonemes', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
    check_argument('punctuations', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)

    # normalization parameters
    check_argument('signal_norm', c['audio'], restricted=True, val_type=bool)
    check_argument('symmetric_norm', c['audio'], restricted=True, val_type=bool)
    check_argument('max_norm', c['audio'], restricted=True, val_type=float, min_val=0.1, max_val=1000)
    check_argument('clip_norm', c['audio'], restricted=True, val_type=bool)
    check_argument('mel_fmin', c['audio'], restricted=True, val_type=float, min_val=0.0, max_val=1000)
    check_argument('mel_fmax', c['audio'], restricted=True, val_type=float, min_val=500.0)
    check_argument('spec_gain', c['audio'], restricted=True, val_type=[int, float], min_val=1, max_val=100)
    check_argument('do_trim_silence', c['audio'], restricted=True, val_type=bool)
    check_argument('trim_db', c['audio'], restricted=True, val_type=int)

    # training parameters
    check_argument('batch_size', c, restricted=True, val_type=int, min_val=1)
    check_argument('eval_batch_size', c, restricted=True, val_type=int, min_val=1)
    check_argument('r', c, restricted=True, val_type=int, min_val=1)
    check_argument('gradual_training', c, restricted=False, val_type=list)
    check_argument('mixed_precision', c, restricted=False, val_type=bool)
    # check_argument('grad_accum', c, restricted=True, val_type=int, min_val=1, max_val=100)

    # loss parameters
    check_argument('loss_masking', c, restricted=True, val_type=bool)
    if c['model'].lower() in ['tacotron', 'tacotron2']:
        check_argument('decoder_loss_alpha', c, restricted=True, val_type=float, min_val=0)
        check_argument('postnet_loss_alpha', c, restricted=True, val_type=float, min_val=0)
        check_argument('postnet_diff_spec_alpha', c, restricted=True, val_type=float, min_val=0)
        check_argument('decoder_diff_spec_alpha', c, restricted=True, val_type=float, min_val=0)
        check_argument('decoder_ssim_alpha', c, restricted=True, val_type=float, min_val=0)
        check_argument('postnet_ssim_alpha', c, restricted=True, val_type=float, min_val=0)
        check_argument('ga_alpha', c, restricted=True, val_type=float, min_val=0)
    if c['model'].lower == "speedy_speech":
        check_argument('ssim_alpha', c, restricted=True, val_type=float, min_val=0)
        check_argument('l1_alpha', c, restricted=True, val_type=float, min_val=0)
        check_argument('huber_alpha', c, restricted=True, val_type=float, min_val=0)

    # validation parameters
    check_argument('run_eval', c, restricted=True, val_type=bool)
    check_argument('test_delay_epochs', c, restricted=True, val_type=int, min_val=0)
    check_argument('test_sentences_file', c, restricted=False, val_type=str)

    # optimizer
    check_argument('noam_schedule', c, restricted=False, val_type=bool)
    check_argument('grad_clip', c, restricted=True, val_type=float, min_val=0.0)
    check_argument('epochs', c, restricted=True, val_type=int, min_val=1)
    check_argument('lr', c, restricted=True, val_type=float, min_val=0)
    check_argument('wd', c, restricted=is_tacotron(c), val_type=float, min_val=0)
    check_argument('warmup_steps', c, restricted=True, val_type=int, min_val=0)
    check_argument('seq_len_norm', c, restricted=is_tacotron(c), val_type=bool)

    # tacotron prenet
    check_argument('memory_size', c, restricted=is_tacotron(c), val_type=int, min_val=-1)
    check_argument('prenet_type', c, restricted=is_tacotron(c), val_type=str, enum_list=['original', 'bn'])
    check_argument('prenet_dropout', c, restricted=is_tacotron(c), val_type=bool)

    # attention
    check_argument('attention_type', c, restricted=is_tacotron(c), val_type=str, enum_list=['graves', 'original', 'dynamic_convolution'])
    check_argument('attention_heads', c, restricted=is_tacotron(c), val_type=int)
    check_argument('attention_norm', c, restricted=is_tacotron(c), val_type=str, enum_list=['sigmoid', 'softmax'])
    check_argument('windowing', c, restricted=is_tacotron(c), val_type=bool)
    check_argument('use_forward_attn', c, restricted=is_tacotron(c), val_type=bool)
    check_argument('forward_attn_mask', c, restricted=is_tacotron(c), val_type=bool)
    check_argument('transition_agent', c, restricted=is_tacotron(c), val_type=bool)
    check_argument('transition_agent', c, restricted=is_tacotron(c), val_type=bool)
    check_argument('location_attn', c, restricted=is_tacotron(c), val_type=bool)
    check_argument('bidirectional_decoder', c, restricted=is_tacotron(c), val_type=bool)
    check_argument('double_decoder_consistency', c, restricted=is_tacotron(c), val_type=bool)
    check_argument('ddc_r', c, restricted='double_decoder_consistency' in c.keys(), min_val=1, max_val=7, val_type=int)

    if c['model'].lower() in ['tacotron', 'tacotron2']:
        # stopnet
        check_argument('stopnet', c, restricted=is_tacotron(c), val_type=bool)
        check_argument('separate_stopnet', c, restricted=is_tacotron(c), val_type=bool)

    # Model Parameters for non-tacotron models
    if c['model'].lower == "speedy_speech":
        check_argument('positional_encoding', c, restricted=True, val_type=type)
        check_argument('encoder_type', c, restricted=True, val_type=str)
        check_argument('encoder_params', c, restricted=True, val_type=dict)
        check_argument('decoder_residual_conv_bn_params', c, restricted=True, val_type=dict)

    # GlowTTS parameters
    check_argument('encoder_type', c, restricted=not is_tacotron(c), val_type=str)

    # tensorboard
    check_argument('print_step', c, restricted=True, val_type=int, min_val=1)
    check_argument('tb_plot_step', c, restricted=True, val_type=int, min_val=1)
    check_argument('save_step', c, restricted=True, val_type=int, min_val=1)
    check_argument('checkpoint', c, restricted=True, val_type=bool)
    check_argument('tb_model_param_stats', c, restricted=True, val_type=bool)

    # dataloading
    # pylint: disable=import-outside-toplevel
    from TTS.tts.utils.text import cleaners
    check_argument('text_cleaner', c, restricted=True, val_type=str, enum_list=dir(cleaners))
    check_argument('enable_eos_bos_chars', c, restricted=True, val_type=bool)
    check_argument('num_loader_workers', c, restricted=True, val_type=int, min_val=0)
    check_argument('num_val_loader_workers', c, restricted=True, val_type=int, min_val=0)
    check_argument('batch_group_size', c, restricted=True, val_type=int, min_val=0)
    check_argument('min_seq_len', c, restricted=True, val_type=int, min_val=0)
    check_argument('max_seq_len', c, restricted=True, val_type=int, min_val=10)
    check_argument('compute_input_seq_cache', c, restricted=True, val_type=bool)

    # paths
    check_argument('output_path', c, restricted=True, val_type=str)

    # multi-speaker and gst
    check_argument('use_speaker_embedding', c, restricted=True, val_type=bool)
    check_argument('use_external_speaker_embedding_file', c, restricted=c['use_speaker_embedding'], val_type=bool)
    check_argument('external_speaker_embedding_file', c, restricted=c['use_external_speaker_embedding_file'], val_type=str)
    if c['model'].lower() in ['tacotron', 'tacotron2'] and c['use_gst']:
        check_argument('use_gst', c, restricted=is_tacotron(c), val_type=bool)
        check_argument('gst', c, restricted=is_tacotron(c), val_type=dict)
        check_argument('gst_style_input', c['gst'], restricted=is_tacotron(c), val_type=[str, dict])
        check_argument('gst_embedding_dim', c['gst'], restricted=is_tacotron(c), val_type=int, min_val=0, max_val=1000)
        check_argument('gst_use_speaker_embedding', c['gst'], restricted=is_tacotron(c), val_type=bool)
        check_argument('gst_num_heads', c['gst'], restricted=is_tacotron(c), val_type=int, min_val=2, max_val=10)
        check_argument('gst_style_tokens', c['gst'], restricted=is_tacotron(c), val_type=int, min_val=1, max_val=1000)

    # datasets - checking only the first entry
    check_argument('datasets', c, restricted=True, val_type=list)
    for dataset_entry in c['datasets']:
        check_argument('name', dataset_entry, restricted=True, val_type=str)
        check_argument('path', dataset_entry, restricted=True, val_type=str)
        check_argument('meta_file_train', dataset_entry, restricted=True, val_type=[str, list])
        check_argument('meta_file_val', dataset_entry, restricted=True, val_type=str)