File size: 18,140 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import math
import numpy as np
import torch
from torch import nn
from inspect import signature
from torch.nn import functional
from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.utils.ssim import ssim


# pylint: disable=abstract-method Method
# relates https://github.com/pytorch/pytorch/issues/42305
class L1LossMasked(nn.Module):
    def __init__(self, seq_len_norm):
        super().__init__()
        self.seq_len_norm = seq_len_norm

    def forward(self, x, target, length):
        """
        Args:
            x: A Variable containing a FloatTensor of size
                (batch, max_len, dim) which contains the
                unnormalized probability for each class.
            target: A Variable containing a LongTensor of size
                (batch, max_len, dim) which contains the index of the true
                class for each corresponding step.
            length: A Variable containing a LongTensor of size (batch,)
                which contains the length of each data in a batch.
        Shapes:
            x: B x T X D
            target: B x T x D
            length: B
        Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        # mask: (batch, max_len, 1)
        target.requires_grad = False
        mask = sequence_mask(sequence_length=length,
                             max_len=target.size(1)).unsqueeze(2).float()
        if self.seq_len_norm:
            norm_w = mask / mask.sum(dim=1, keepdim=True)
            out_weights = norm_w.div(target.shape[0] * target.shape[2])
            mask = mask.expand_as(x)
            loss = functional.l1_loss(x * mask,
                                      target * mask,
                                      reduction='none')
            loss = loss.mul(out_weights.to(loss.device)).sum()
        else:
            mask = mask.expand_as(x)
            loss = functional.l1_loss(x * mask, target * mask, reduction='sum')
            loss = loss / mask.sum()
        return loss


class MSELossMasked(nn.Module):
    def __init__(self, seq_len_norm):
        super(MSELossMasked, self).__init__()
        self.seq_len_norm = seq_len_norm

    def forward(self, x, target, length):
        """
        Args:
            x: A Variable containing a FloatTensor of size
                (batch, max_len, dim) which contains the
                unnormalized probability for each class.
            target: A Variable containing a LongTensor of size
                (batch, max_len, dim) which contains the index of the true
                class for each corresponding step.
            length: A Variable containing a LongTensor of size (batch,)
                which contains the length of each data in a batch.
        Shapes:
            x: B x T X D
            target: B x T x D
            length: B
        Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        # mask: (batch, max_len, 1)
        target.requires_grad = False
        mask = sequence_mask(sequence_length=length,
                             max_len=target.size(1)).unsqueeze(2).float()
        if self.seq_len_norm:
            norm_w = mask / mask.sum(dim=1, keepdim=True)
            out_weights = norm_w.div(target.shape[0] * target.shape[2])
            mask = mask.expand_as(x)
            loss = functional.mse_loss(x * mask,
                                       target * mask,
                                       reduction='none')
            loss = loss.mul(out_weights.to(loss.device)).sum()
        else:
            mask = mask.expand_as(x)
            loss = functional.mse_loss(x * mask,
                                       target * mask,
                                       reduction='sum')
            loss = loss / mask.sum()
        return loss


class SSIMLoss(torch.nn.Module):
    """SSIM loss as explained here https://en.wikipedia.org/wiki/Structural_similarity"""
    def __init__(self):
        super().__init__()
        self.loss_func = ssim

    def forward(self, y_hat, y, length=None):
        """
        Args:
            y_hat (tensor): model prediction values.
            y (tensor): target values.
            length (tensor): length of each sample in a batch.
        Shapes:
            y_hat: B x T X D
            y: B x T x D
            length: B
         Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        if length is not None:
            m = sequence_mask(sequence_length=length,
                              max_len=y.size(1)).unsqueeze(2).float().to(
                                  y_hat.device)
            y_hat, y = y_hat * m, y * m
        return 1 - self.loss_func(y_hat.unsqueeze(1), y.unsqueeze(1))


class AttentionEntropyLoss(nn.Module):
    # pylint: disable=R0201
    def forward(self, align):
        """
        Forces attention to be more decisive by penalizing
        soft attention weights

        TODO: arguments
        TODO: unit_test
        """
        entropy = torch.distributions.Categorical(probs=align).entropy()
        loss = (entropy / np.log(align.shape[1])).mean()
        return loss


class BCELossMasked(nn.Module):
    def __init__(self, pos_weight):
        super(BCELossMasked, self).__init__()
        self.pos_weight = pos_weight

    def forward(self, x, target, length):
        """
        Args:
            x: A Variable containing a FloatTensor of size
                (batch, max_len) which contains the
                unnormalized probability for each class.
            target: A Variable containing a LongTensor of size
                (batch, max_len) which contains the index of the true
                class for each corresponding step.
            length: A Variable containing a LongTensor of size (batch,)
                which contains the length of each data in a batch.
        Shapes:
            x: B x T
            target: B x T
            length: B
        Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        # mask: (batch, max_len, 1)
        target.requires_grad = False
        if length is not None:
            mask = sequence_mask(sequence_length=length,
                                max_len=target.size(1)).float()
            x = x * mask
            target = target * mask
            num_items = mask.sum()
        else:
            num_items = torch.numel(x)
        loss = functional.binary_cross_entropy_with_logits(
            x,
            target,
            pos_weight=self.pos_weight,
            reduction='sum')
        loss = loss / num_items
        return loss


class DifferentailSpectralLoss(nn.Module):
    """Differential Spectral Loss
        https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf"""

    def __init__(self, loss_func):
        super().__init__()
        self.loss_func = loss_func

    def forward(self, x, target, length=None):
        """
         Shapes:
            x: B x T
            target: B x T
            length: B
        Returns:
            loss: An average loss value in range [0, 1] masked by the length.
        """
        x_diff = x[:, 1:] - x[:, :-1]
        target_diff = target[:, 1:] - target[:, :-1]
        if length is None:
            return self.loss_func(x_diff, target_diff)
        return self.loss_func(x_diff, target_diff, length-1)


class GuidedAttentionLoss(torch.nn.Module):
    def __init__(self, sigma=0.4):
        super(GuidedAttentionLoss, self).__init__()
        self.sigma = sigma

    def _make_ga_masks(self, ilens, olens):
        B = len(ilens)
        max_ilen = max(ilens)
        max_olen = max(olens)
        ga_masks = torch.zeros((B, max_olen, max_ilen))
        for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
            ga_masks[idx, :olen, :ilen] = self._make_ga_mask(
                ilen, olen, self.sigma)
        return ga_masks

    def forward(self, att_ws, ilens, olens):
        ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device)
        seq_masks = self._make_masks(ilens, olens).to(att_ws.device)
        losses = ga_masks * att_ws
        loss = torch.mean(losses.masked_select(seq_masks))
        return loss

    @staticmethod
    def _make_ga_mask(ilen, olen, sigma):
        grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen))
        grid_x, grid_y = grid_x.float(), grid_y.float()
        return 1.0 - torch.exp(-(grid_y / ilen - grid_x / olen)**2 /
                               (2 * (sigma**2)))

    @staticmethod
    def _make_masks(ilens, olens):
        in_masks = sequence_mask(ilens)
        out_masks = sequence_mask(olens)
        return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2)


class Huber(nn.Module):
    # pylint: disable=R0201
    def forward(self, x, y, length=None):
        """
        Shapes:
            x: B x T
            y: B x T
            length: B
        """
        mask = sequence_mask(sequence_length=length, max_len=y.size(1)).float()
        return torch.nn.functional.smooth_l1_loss(
            x * mask, y * mask, reduction='sum') / mask.sum()


########################
# MODEL LOSS LAYERS
########################

class TacotronLoss(torch.nn.Module):
    """Collection of Tacotron set-up based on provided config."""
    def __init__(self, c, stopnet_pos_weight=10, ga_sigma=0.4):
        super(TacotronLoss, self).__init__()
        self.stopnet_pos_weight = stopnet_pos_weight
        self.ga_alpha = c.ga_alpha
        self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha
        self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha
        self.decoder_alpha = c.decoder_loss_alpha
        self.postnet_alpha = c.postnet_loss_alpha
        self.decoder_ssim_alpha = c.decoder_ssim_alpha
        self.postnet_ssim_alpha = c.postnet_ssim_alpha
        self.config = c

        # postnet and decoder loss
        if c.loss_masking:
            self.criterion = L1LossMasked(c.seq_len_norm) if c.model in [
                "Tacotron"
            ] else MSELossMasked(c.seq_len_norm)
        else:
            self.criterion = nn.L1Loss() if c.model in ["Tacotron"
                                                        ] else nn.MSELoss()
        # guided attention loss
        if c.ga_alpha > 0:
            self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma)
        # differential spectral loss
        if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0:
            self.criterion_diff_spec = DifferentailSpectralLoss(loss_func=self.criterion)
        # ssim loss
        if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0:
            self.criterion_ssim = SSIMLoss()
        # stopnet loss
        # pylint: disable=not-callable
        self.criterion_st = BCELossMasked(
            pos_weight=torch.tensor(stopnet_pos_weight)) if c.stopnet else None

    def forward(self, postnet_output, decoder_output, mel_input, linear_input,
                stopnet_output, stopnet_target, output_lens, decoder_b_output,
                alignments, alignment_lens, alignments_backwards, input_lens):

        return_dict = {}
        # remove lengths if no masking is applied
        if not self.config.loss_masking:
            output_lens = None
        # decoder and postnet losses
        if self.config.loss_masking:
            if self.decoder_alpha > 0:
                decoder_loss = self.criterion(decoder_output, mel_input,
                                              output_lens)
            if self.postnet_alpha > 0:
                if self.config.model in ["Tacotron", "TacotronGST"]:
                    postnet_loss = self.criterion(postnet_output, linear_input,
                                                output_lens)
                else:
                    postnet_loss = self.criterion(postnet_output, mel_input,
                                                output_lens)
        else:
            if self.decoder_alpha > 0:
                decoder_loss = self.criterion(decoder_output, mel_input)
            if self.postnet_alpha > 0:
                if self.config.model in ["Tacotron", "TacotronGST"]:
                    postnet_loss = self.criterion(postnet_output, linear_input)
                else:
                    postnet_loss = self.criterion(postnet_output, mel_input)
        loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss
        return_dict['decoder_loss'] = decoder_loss
        return_dict['postnet_loss'] = postnet_loss

        # stopnet loss
        stop_loss = self.criterion_st(
            stopnet_output, stopnet_target,
            output_lens) if self.config.stopnet else torch.zeros(1)
        if not self.config.separate_stopnet and self.config.stopnet:
            loss += stop_loss
        return_dict['stopnet_loss'] = stop_loss

        # backward decoder loss (if enabled)
        if self.config.bidirectional_decoder:
            if self.config.loss_masking:
                decoder_b_loss = self.criterion(
                    torch.flip(decoder_b_output, dims=(1, )), mel_input,
                    output_lens)
            else:
                decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1, )), mel_input)
            decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1, )), decoder_output)
            loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss)
            return_dict['decoder_b_loss'] = decoder_b_loss
            return_dict['decoder_c_loss'] = decoder_c_loss

        # double decoder consistency loss (if enabled)
        if self.config.double_decoder_consistency:
            if self.config.loss_masking:
                decoder_b_loss = self.criterion(decoder_b_output, mel_input,
                                                output_lens)
            else:
                decoder_b_loss = self.criterion(decoder_b_output, mel_input)
            # decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output)
            attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards)
            loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss)
            return_dict['decoder_coarse_loss'] = decoder_b_loss
            return_dict['decoder_ddc_loss'] = attention_c_loss

        # guided attention loss (if enabled)
        if self.config.ga_alpha > 0:
            ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens)
            loss += ga_loss * self.ga_alpha
            return_dict['ga_loss'] = ga_loss

        # decoder differential spectral loss
        if self.config.decoder_diff_spec_alpha > 0:
            decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens)
            loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha
            return_dict['decoder_diff_spec_loss'] = decoder_diff_spec_loss

        # postnet differential spectral loss
        if self.config.postnet_diff_spec_alpha > 0:
            postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, mel_input, output_lens)
            loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha
            return_dict['postnet_diff_spec_loss'] = postnet_diff_spec_loss

        # decoder ssim loss
        if self.config.decoder_ssim_alpha > 0:
            decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens)
            loss += decoder_ssim_loss * self.postnet_ssim_alpha
            return_dict['decoder_ssim_loss'] = decoder_ssim_loss

        # postnet ssim loss
        if self.config.postnet_ssim_alpha > 0:
            postnet_ssim_loss = self.criterion_ssim(postnet_output, mel_input, output_lens)
            loss += postnet_ssim_loss * self.postnet_ssim_alpha
            return_dict['postnet_ssim_loss'] = postnet_ssim_loss

        return_dict['loss'] = loss

        # check if any loss is NaN
        for key, loss in return_dict.items():
            if torch.isnan(loss):
                raise RuntimeError(f" [!] NaN loss with {key}.")
        return return_dict


class GlowTTSLoss(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.constant_factor = 0.5 * math.log(2 * math.pi)

    def forward(self, z, means, scales, log_det, y_lengths, o_dur_log,
                o_attn_dur, x_lengths):
        return_dict = {}
        # flow loss - neg log likelihood
        pz = torch.sum(scales) + 0.5 * torch.sum(
            torch.exp(-2 * scales) * (z - means)**2)
        log_mle = self.constant_factor + (pz - torch.sum(log_det)) / (
            torch.sum(y_lengths) * z.shape[1])
        # duration loss - MSE
        # loss_dur = torch.sum((o_dur_log - o_attn_dur)**2) / torch.sum(x_lengths)
        # duration loss - huber loss
        loss_dur = torch.nn.functional.smooth_l1_loss(
            o_dur_log, o_attn_dur, reduction='sum') / torch.sum(x_lengths)
        return_dict['loss'] = log_mle + loss_dur
        return_dict['log_mle'] = log_mle
        return_dict['loss_dur'] = loss_dur

        # check if any loss is NaN
        for key, loss in return_dict.items():
            if torch.isnan(loss):
                raise RuntimeError(f" [!] NaN loss with {key}.")
        return return_dict


class SpeedySpeechLoss(nn.Module):
    def __init__(self, c):
        super().__init__()
        self.l1 = L1LossMasked(False)
        self.ssim = SSIMLoss()
        self.huber = Huber()

        self.ssim_alpha = c.ssim_alpha
        self.huber_alpha = c.huber_alpha
        self.l1_alpha = c.l1_alpha

    def forward(self, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens):
        l1_loss = self.l1(decoder_output, decoder_target, decoder_output_lens)
        ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
        huber_loss = self.huber(dur_output, dur_target, input_lens)
        loss = l1_loss + ssim_loss + huber_loss
        return {'loss': loss, 'loss_l1': l1_loss, 'loss_ssim': ssim_loss, 'loss_dur': huber_loss}