File size: 6,369 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

# adapted from https://github.com/cvqluu/GE2E-Loss
class GE2ELoss(nn.Module):
    def __init__(self, init_w=10.0, init_b=-5.0, loss_method="softmax"):
        """
        Implementation of the Generalized End-to-End loss defined in https://arxiv.org/abs/1710.10467 [1]
        Accepts an input of size (N, M, D)
            where N is the number of speakers in the batch,
            M is the number of utterances per speaker,
            and D is the dimensionality of the embedding vector (e.g. d-vector)
        Args:
            - init_w (float): defines the initial value of w in Equation (5) of [1]
            - init_b (float): definies the initial value of b in Equation (5) of [1]
        """
        super(GE2ELoss, self).__init__()
        # pylint: disable=E1102
        self.w = nn.Parameter(torch.tensor(init_w))
        # pylint: disable=E1102
        self.b = nn.Parameter(torch.tensor(init_b))
        self.loss_method = loss_method

        print(' > Initialised Generalized End-to-End loss')

        assert self.loss_method in ["softmax", "contrast"]

        if self.loss_method == "softmax":
            self.embed_loss = self.embed_loss_softmax
        if self.loss_method == "contrast":
            self.embed_loss = self.embed_loss_contrast

    # pylint: disable=R0201
    def calc_new_centroids(self, dvecs, centroids, spkr, utt):
        """
        Calculates the new centroids excluding the reference utterance
        """
        excl = torch.cat((dvecs[spkr, :utt], dvecs[spkr, utt + 1 :]))
        excl = torch.mean(excl, 0)
        new_centroids = []
        for i, centroid in enumerate(centroids):
            if i == spkr:
                new_centroids.append(excl)
            else:
                new_centroids.append(centroid)
        return torch.stack(new_centroids)

    def calc_cosine_sim(self, dvecs, centroids):
        """
        Make the cosine similarity matrix with dims (N,M,N)
        """
        cos_sim_matrix = []
        for spkr_idx, speaker in enumerate(dvecs):
            cs_row = []
            for utt_idx, utterance in enumerate(speaker):
                new_centroids = self.calc_new_centroids(
                    dvecs, centroids, spkr_idx, utt_idx
                )
                # vector based cosine similarity for speed
                cs_row.append(
                    torch.clamp(
                        torch.mm(
                            utterance.unsqueeze(1).transpose(0, 1),
                            new_centroids.transpose(0, 1),
                        )
                        / (torch.norm(utterance) * torch.norm(new_centroids, dim=1)),
                        1e-6,
                    )
                )
            cs_row = torch.cat(cs_row, dim=0)
            cos_sim_matrix.append(cs_row)
        return torch.stack(cos_sim_matrix)

    # pylint: disable=R0201
    def embed_loss_softmax(self, dvecs, cos_sim_matrix):
        """
        Calculates the loss on each embedding $L(e_{ji})$ by taking softmax
        """
        N, M, _ = dvecs.shape
        L = []
        for j in range(N):
            L_row = []
            for i in range(M):
                L_row.append(-F.log_softmax(cos_sim_matrix[j, i], 0)[j])
            L_row = torch.stack(L_row)
            L.append(L_row)
        return torch.stack(L)

    # pylint: disable=R0201
    def embed_loss_contrast(self, dvecs, cos_sim_matrix):
        """
        Calculates the loss on each embedding $L(e_{ji})$ by contrast loss with closest centroid
        """
        N, M, _ = dvecs.shape
        L = []
        for j in range(N):
            L_row = []
            for i in range(M):
                centroids_sigmoids = torch.sigmoid(cos_sim_matrix[j, i])
                excl_centroids_sigmoids = torch.cat(
                    (centroids_sigmoids[:j], centroids_sigmoids[j + 1 :])
                )
                L_row.append(
                    1.0
                    - torch.sigmoid(cos_sim_matrix[j, i, j])
                    + torch.max(excl_centroids_sigmoids)
                )
            L_row = torch.stack(L_row)
            L.append(L_row)
        return torch.stack(L)

    def forward(self, dvecs):
        """
        Calculates the GE2E loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
        """
        centroids = torch.mean(dvecs, 1)
        cos_sim_matrix = self.calc_cosine_sim(dvecs, centroids)
        torch.clamp(self.w, 1e-6)
        cos_sim_matrix = self.w * cos_sim_matrix + self.b
        L = self.embed_loss(dvecs, cos_sim_matrix)
        return L.mean()

# adapted from https://github.com/clovaai/voxceleb_trainer/blob/master/loss/angleproto.py
class AngleProtoLoss(nn.Module):
    """
    Implementation of the Angular Prototypical loss defined in https://arxiv.org/abs/2003.11982
        Accepts an input of size (N, M, D)
            where N is the number of speakers in the batch,
            M is the number of utterances per speaker,
            and D is the dimensionality of the embedding vector
        Args:
            - init_w (float): defines the initial value of w
            - init_b (float): definies the initial value of b
    """
    def __init__(self, init_w=10.0, init_b=-5.0):
        super(AngleProtoLoss, self).__init__()
        # pylint: disable=E1102
        self.w = nn.Parameter(torch.tensor(init_w))
        # pylint: disable=E1102
        self.b = nn.Parameter(torch.tensor(init_b))
        self.criterion = torch.nn.CrossEntropyLoss()

        print(' > Initialised Angular Prototypical loss')

    def forward(self, x):
        """
        Calculates the AngleProto loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
        """
        out_anchor = torch.mean(x[:, 1:, :], 1)
        out_positive = x[:, 0, :]
        num_speakers = out_anchor.size()[0]

        cos_sim_matrix = F.cosine_similarity(out_positive.unsqueeze(-1).expand(-1, -1, num_speakers), out_anchor.unsqueeze(-1).expand(-1, -1, num_speakers).transpose(0, 2))
        torch.clamp(self.w, 1e-6)
        cos_sim_matrix = cos_sim_matrix * self.w + self.b
        label = torch.from_numpy(np.asarray(range(0, num_speakers))).to(cos_sim_matrix.device)
        L = self.criterion(cos_sim_matrix, label)
        return L