File size: 3,538 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
"""Search a good noise schedule for WaveGrad for a given number of inferece iterations"""
import argparse
from itertools import product as cartesian_product
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
from TTS.vocoder.datasets.preprocess import load_wav_data
from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset
from TTS.vocoder.utils.generic_utils import setup_generator
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, help='Path to model checkpoint.')
parser.add_argument('--config_path', type=str, help='Path to model config file.')
parser.add_argument('--data_path', type=str, help='Path to data directory.')
parser.add_argument('--output_path', type=str, help='path for output file including file name and extension.')
parser.add_argument('--num_iter', type=int, help='Number of model inference iterations that you like to optimize noise schedule for.')
parser.add_argument('--use_cuda', type=bool, help='enable/disable CUDA.')
parser.add_argument('--num_samples', type=int, default=1, help='Number of datasamples used for inference.')
parser.add_argument('--search_depth', type=int, default=3, help='Search granularity. Increasing this increases the run-time exponentially.')
# load config
args = parser.parse_args()
config = load_config(args.config_path)
# setup audio processor
ap = AudioProcessor(**config.audio)
# load dataset
_, train_data = load_wav_data(args.data_path, 0)
train_data = train_data[:args.num_samples]
dataset = WaveGradDataset(ap=ap,
items=train_data,
seq_len=-1,
hop_len=ap.hop_length,
pad_short=config.pad_short,
conv_pad=config.conv_pad,
is_training=True,
return_segments=False,
use_noise_augment=False,
use_cache=False,
verbose=True)
loader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
collate_fn=dataset.collate_full_clips,
drop_last=False,
num_workers=config.num_loader_workers,
pin_memory=False)
# setup the model
model = setup_generator(config)
if args.use_cuda:
model.cuda()
# setup optimization parameters
base_values = sorted(10 * np.random.uniform(size=args.search_depth))
print(base_values)
exponents = 10 ** np.linspace(-6, -1, num=args.num_iter)
best_error = float('inf')
best_schedule = None
total_search_iter = len(base_values)**args.num_iter
for base in tqdm(cartesian_product(base_values, repeat=args.num_iter), total=total_search_iter):
beta = exponents * base
model.compute_noise_level(beta)
for data in loader:
mel, audio = data
y_hat = model.inference(mel.cuda() if args.use_cuda else mel)
if args.use_cuda:
y_hat = y_hat.cpu()
y_hat = y_hat.numpy()
mel_hat = []
for i in range(y_hat.shape[0]):
m = ap.melspectrogram(y_hat[i, 0])[:, :-1]
mel_hat.append(torch.from_numpy(m))
mel_hat = torch.stack(mel_hat)
mse = torch.sum((mel - mel_hat) ** 2).mean()
if mse.item() < best_error:
best_error = mse.item()
best_schedule = {'beta': beta}
print(f" > Found a better schedule. - MSE: {mse.item()}")
np.save(args.output_path, best_schedule)
|