File size: 18,329 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import argparse
import glob
import os
import sys
import time
import traceback
import numpy as np

import torch
# DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import init_distributed
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
                                     create_experiment_folder, get_git_branch,
                                     remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import setup_torch_training_env
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset
from TTS.vocoder.utils.generic_utils import plot_results, setup_generator
from TTS.vocoder.utils.io import save_best_model, save_checkpoint

use_cuda, num_gpus = setup_torch_training_env(True, True)


def setup_loader(ap, is_val=False, verbose=False):
    if is_val and not c.run_eval:
        loader = None
    else:
        dataset = WaveGradDataset(ap=ap,
                                items=eval_data if is_val else train_data,
                                seq_len=c.seq_len,
                                hop_len=ap.hop_length,
                                pad_short=c.pad_short,
                                conv_pad=c.conv_pad,
                                is_training=not is_val,
                                return_segments=True,
                                use_noise_augment=False,
                                use_cache=c.use_cache,
                                verbose=verbose)
        sampler = DistributedSampler(dataset) if num_gpus > 1 else None
        loader = DataLoader(dataset,
                            batch_size=c.batch_size,
                            shuffle=num_gpus <= 1,
                            drop_last=False,
                            sampler=sampler,
                            num_workers=c.num_val_loader_workers
                            if is_val else c.num_loader_workers,
                            pin_memory=False)


    return loader


def format_data(data):
    # return a whole audio segment
    m, x = data
    x = x.unsqueeze(1)
    if use_cuda:
        m = m.cuda(non_blocking=True)
        x = x.cuda(non_blocking=True)
    return m, x


def format_test_data(data):
    # return a whole audio segment
    m, x = data
    m = m[None, ...]
    x = x[None, None, ...]
    if use_cuda:
        m = m.cuda(non_blocking=True)
        x = x.cuda(non_blocking=True)
    return m, x


def train(model, criterion, optimizer,
          scheduler, scaler, ap, global_step, epoch):
    data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
    model.train()
    epoch_time = 0
    keep_avg = KeepAverage()
    if use_cuda:
        batch_n_iter = int(
            len(data_loader.dataset) / (c.batch_size * num_gpus))
    else:
        batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
    end_time = time.time()
    c_logger.print_train_start()
    # setup noise schedule
    noise_schedule = c['train_noise_schedule']
    betas = np.linspace(noise_schedule['min_val'], noise_schedule['max_val'], noise_schedule['num_steps'])
    if hasattr(model, 'module'):
        model.module.compute_noise_level(betas)
    else:
        model.compute_noise_level(betas)
    for num_iter, data in enumerate(data_loader):
        start_time = time.time()

        # format data
        m, x = format_data(data)
        loader_time = time.time() - end_time

        global_step += 1

        with torch.cuda.amp.autocast(enabled=c.mixed_precision):
            # compute noisy input
            if hasattr(model, 'module'):
                noise, x_noisy, noise_scale = model.module.compute_y_n(x)
            else:
                noise, x_noisy, noise_scale = model.compute_y_n(x)

            # forward pass
            noise_hat = model(x_noisy, m, noise_scale)

            # compute losses
            loss = criterion(noise, noise_hat)
        loss_wavegrad_dict = {'wavegrad_loss':loss}

        # check nan loss
        if torch.isnan(loss).any():
            raise RuntimeError(f'Detected NaN loss at step {global_step}.')

        optimizer.zero_grad()

        # backward pass with loss scaling
        if c.mixed_precision:
            scaler.scale(loss).backward()
            scaler.unscale_(optimizer)
            grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           c.clip_grad)
            scaler.step(optimizer)
            scaler.update()
        else:
            loss.backward()
            grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           c.clip_grad)
            optimizer.step()

        # schedule update
        if scheduler is not None:
            scheduler.step()

        # disconnect loss values
        loss_dict = dict()
        for key, value in loss_wavegrad_dict.items():
            if isinstance(value, int):
                loss_dict[key] = value
            else:
                loss_dict[key] = value.item()

        # epoch/step timing
        step_time = time.time() - start_time
        epoch_time += step_time

        # get current learning rates
        current_lr = list(optimizer.param_groups)[0]['lr']

        # update avg stats
        update_train_values = dict()
        for key, value in loss_dict.items():
            update_train_values['avg_' + key] = value
        update_train_values['avg_loader_time'] = loader_time
        update_train_values['avg_step_time'] = step_time
        keep_avg.update_values(update_train_values)

        # print training stats
        if global_step % c.print_step == 0:
            log_dict = {
                'step_time': [step_time, 2],
                'loader_time': [loader_time, 4],
                "current_lr": current_lr,
                "grad_norm": grad_norm.item()
            }
            c_logger.print_train_step(batch_n_iter, num_iter, global_step,
                                      log_dict, loss_dict, keep_avg.avg_values)

        if args.rank == 0:
            # plot step stats
            if global_step % 10 == 0:
                iter_stats = {
                    "lr": current_lr,
                    "grad_norm": grad_norm.item(),
                    "step_time": step_time
                }
                iter_stats.update(loss_dict)
                tb_logger.tb_train_iter_stats(global_step, iter_stats)

            # save checkpoint
            if global_step % c.save_step == 0:
                if c.checkpoint:
                    # save model
                    save_checkpoint(model,
                                    optimizer,
                                    scheduler,
                                    None,
                                    None,
                                    None,
                                    global_step,
                                    epoch,
                                    OUT_PATH,
                                    model_losses=loss_dict,
                                    scaler=scaler.state_dict() if c.mixed_precision else None)

        end_time = time.time()

    # print epoch stats
    c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)

    # Plot Training Epoch Stats
    epoch_stats = {"epoch_time": epoch_time}
    epoch_stats.update(keep_avg.avg_values)
    if args.rank == 0:
        tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
    # TODO: plot model stats
    if c.tb_model_param_stats and args.rank == 0:
        tb_logger.tb_model_weights(model, global_step)
    return keep_avg.avg_values, global_step


@torch.no_grad()
def evaluate(model, criterion, ap, global_step, epoch):
    data_loader = setup_loader(ap, is_val=True, verbose=(epoch == 0))
    model.eval()
    epoch_time = 0
    keep_avg = KeepAverage()
    end_time = time.time()
    c_logger.print_eval_start()
    for num_iter, data in enumerate(data_loader):
        start_time = time.time()

        # format data
        m, x = format_data(data)
        loader_time = time.time() - end_time

        global_step += 1

        # compute noisy input
        if hasattr(model, 'module'):
            noise, x_noisy, noise_scale = model.module.compute_y_n(x)
        else:
            noise, x_noisy, noise_scale = model.compute_y_n(x)


        # forward pass
        noise_hat = model(x_noisy, m, noise_scale)

        # compute losses
        loss = criterion(noise, noise_hat)
        loss_wavegrad_dict = {'wavegrad_loss':loss}


        loss_dict = dict()
        for key, value in loss_wavegrad_dict.items():
            if isinstance(value, (int, float)):
                loss_dict[key] = value
            else:
                loss_dict[key] = value.item()

        step_time = time.time() - start_time
        epoch_time += step_time

        # update avg stats
        update_eval_values = dict()
        for key, value in loss_dict.items():
            update_eval_values['avg_' + key] = value
        update_eval_values['avg_loader_time'] = loader_time
        update_eval_values['avg_step_time'] = step_time
        keep_avg.update_values(update_eval_values)

        # print eval stats
        if c.print_eval:
            c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)

    if args.rank == 0:
        data_loader.dataset.return_segments = False
        samples = data_loader.dataset.load_test_samples(1)
        m, x = format_test_data(samples[0])

        # setup noise schedule and inference
        noise_schedule = c['test_noise_schedule']
        betas = np.linspace(noise_schedule['min_val'], noise_schedule['max_val'], noise_schedule['num_steps'])
        if hasattr(model, 'module'):
            model.module.compute_noise_level(betas)
            # compute voice
            x_pred = model.module.inference(m)
        else:
            model.compute_noise_level(betas)
            # compute voice
            x_pred = model.inference(m)

        # compute spectrograms
        figures = plot_results(x_pred, x, ap, global_step, 'eval')
        tb_logger.tb_eval_figures(global_step, figures)

        # Sample audio
        sample_voice = x_pred[0].squeeze(0).detach().cpu().numpy()
        tb_logger.tb_eval_audios(global_step, {'eval/audio': sample_voice},
                                 c.audio["sample_rate"])

        tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
        data_loader.dataset.return_segments = True

    return keep_avg.avg_values


def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global train_data, eval_data
    print(f" > Loading wavs from: {c.data_path}")
    if c.feature_path is not None:
        print(f" > Loading features from: {c.feature_path}")
        eval_data, train_data = load_wav_feat_data(c.data_path, c.feature_path, c.eval_split_size)
    else:
        eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size)

    # setup audio processor
    ap = AudioProcessor(**c.audio)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])

    # setup models
    model = setup_generator(c)

    # scaler for mixed_precision
    scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None

    # setup optimizers
    optimizer = Adam(model.parameters(), lr=c.lr, weight_decay=0)

    # schedulers
    scheduler = None
    if 'lr_scheduler' in c:
        scheduler = getattr(torch.optim.lr_scheduler, c.lr_scheduler)
        scheduler = scheduler(optimizer, **c.lr_scheduler_params)

    # setup criterion
    criterion = torch.nn.L1Loss().cuda()

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            print(" > Restoring Model...")
            model.load_state_dict(checkpoint['model'])
            print(" > Restoring Optimizer...")
            optimizer.load_state_dict(checkpoint['optimizer'])
            if 'scheduler' in checkpoint:
                print(" > Restoring LR Scheduler...")
                scheduler.load_state_dict(checkpoint['scheduler'])
                # NOTE: Not sure if necessary
                scheduler.optimizer = optimizer
            if "scaler" in checkpoint and c.mixed_precision:
                print(" > Restoring AMP Scaler...")
                scaler.load_state_dict(checkpoint["scaler"])
        except RuntimeError:
            # retore only matching layers.
            print(" > Partial model initialization...")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model.load_state_dict(model_dict)
            del model_dict

        # reset lr if not countinuining training.
        for group in optimizer.param_groups:
            group['lr'] = c.lr

        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = DDP_th(model, device_ids=[args.rank])

    num_params = count_parameters(model)
    print(" > WaveGrad has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        _, global_step = train(model, criterion, optimizer,
                               scheduler, scaler, ap, global_step,
                               epoch)
        eval_avg_loss_dict = evaluate(model, criterion, ap,
                                      global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = eval_avg_loss_dict[c.target_loss]
        best_loss = save_best_model(target_loss,
                                    best_loss,
                                    model,
                                    optimizer,
                                    scheduler,
                                    None,
                                    None,
                                    None,
                                    global_step,
                                    epoch,
                                    OUT_PATH,
                                    model_losses=eval_avg_loss_dict,
                                    scaler=scaler.state_dict() if c.mixed_precision else None)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--continue_path',
        type=str,
        help=
        'Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
        default='',
        required='--config_path' not in sys.argv)
    parser.add_argument(
        '--restore_path',
        type=str,
        help='Model file to be restored. Use to finetune a model.',
        default='')
    parser.add_argument('--config_path',
                        type=str,
                        help='Path to config file for training.',
                        required='--continue_path' not in sys.argv)
    parser.add_argument('--debug',
                        type=bool,
                        default=False,
                        help='Do not verify commit integrity to run training.')

    # DISTRUBUTED
    parser.add_argument(
        '--rank',
        type=int,
        default=0,
        help='DISTRIBUTED: process rank for distributed training.')
    parser.add_argument('--group_id',
                        type=str,
                        default="",
                        help='DISTRIBUTED: process group id.')
    args = parser.parse_args()

    if args.continue_path != '':
        args.output_path = args.continue_path
        args.config_path = os.path.join(args.continue_path, 'config.json')
        list_of_files = glob.glob(
            args.continue_path +
            "/*.pth.tar")  # * means all if need specific format then *.csv
        latest_model_file = max(list_of_files, key=os.path.getctime)
        args.restore_path = latest_model_file
        print(f" > Training continues for {args.restore_path}")

    # setup output paths and read configs
    c = load_config(args.config_path)
    # check_config(c)
    _ = os.path.dirname(os.path.realpath(__file__))

    # DISTRIBUTED
    if c.mixed_precision:
        print("   >  Mixed precision is enabled")

    OUT_PATH = args.continue_path
    if args.continue_path == '':
        OUT_PATH = create_experiment_folder(c.output_path, c.run_name,
                                            args.debug)

    AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')

    c_logger = ConsoleLogger()

    if args.rank == 0:
        os.makedirs(AUDIO_PATH, exist_ok=True)
        new_fields = {}
        if args.restore_path:
            new_fields["restore_path"] = args.restore_path
        new_fields["github_branch"] = get_git_branch()
        copy_model_files(c,  args.config_path,
                         OUT_PATH, new_fields)
        os.chmod(AUDIO_PATH, 0o775)
        os.chmod(OUT_PATH, 0o775)

        LOG_DIR = OUT_PATH
        tb_logger = TensorboardLogger(LOG_DIR, model_name='VOCODER')

        # write model desc to tensorboard
        tb_logger.tb_add_text('model-description', c['run_description'], 0)

    try:
        main(args)
    except KeyboardInterrupt:
        remove_experiment_folder(OUT_PATH)
        try:
            sys.exit(0)
        except SystemExit:
            os._exit(0)  # pylint: disable=protected-access
    except Exception:  # pylint: disable=broad-except
        remove_experiment_folder(OUT_PATH)
        traceback.print_exc()
        sys.exit(1)