File size: 24,482 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import argparse
import glob
import os
import sys
import time
import traceback
from inspect import signature

import torch
from torch.utils.data import DataLoader
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
                                     create_experiment_folder, get_git_branch,
                                     remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import setup_torch_training_env
from TTS.vocoder.datasets.gan_dataset import GANDataset
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
from TTS.vocoder.utils.generic_utils import (plot_results, setup_discriminator,
                                             setup_generator)
from TTS.vocoder.utils.io import save_best_model, save_checkpoint

# DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data.distributed import DistributedSampler
from TTS.utils.distribute import init_distributed

use_cuda, num_gpus = setup_torch_training_env(True, True)


def setup_loader(ap, is_val=False, verbose=False):
    if is_val and not c.run_eval:
        loader = None
    else:
        dataset = GANDataset(ap=ap,
                             items=eval_data if is_val else train_data,
                             seq_len=c.seq_len,
                             hop_len=ap.hop_length,
                             pad_short=c.pad_short,
                             conv_pad=c.conv_pad,
                             is_training=not is_val,
                             return_segments=not is_val,
                             use_noise_augment=c.use_noise_augment,
                             use_cache=c.use_cache,
                             verbose=verbose)
        dataset.shuffle_mapping()
        sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None
        loader = DataLoader(dataset,
                            batch_size=1 if is_val else c.batch_size,
                            shuffle=False if num_gpus > 1 else True,
                            drop_last=False,
                            sampler=sampler,
                            num_workers=c.num_val_loader_workers
                            if is_val else c.num_loader_workers,
                            pin_memory=False)
    return loader


def format_data(data):
    if isinstance(data[0], list):
        # setup input data
        c_G, x_G = data[0]
        c_D, x_D = data[1]

        # dispatch data to GPU
        if use_cuda:
            c_G = c_G.cuda(non_blocking=True)
            x_G = x_G.cuda(non_blocking=True)
            c_D = c_D.cuda(non_blocking=True)
            x_D = x_D.cuda(non_blocking=True)

        return c_G, x_G, c_D, x_D

    # return a whole audio segment
    co, x = data
    if use_cuda:
        co = co.cuda(non_blocking=True)
        x = x.cuda(non_blocking=True)
    return co, x, None, None


def train(model_G, criterion_G, optimizer_G, model_D, criterion_D, optimizer_D,
          scheduler_G, scheduler_D, ap, global_step, epoch):
    data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
    model_G.train()
    model_D.train()
    epoch_time = 0
    keep_avg = KeepAverage()
    if use_cuda:
        batch_n_iter = int(
            len(data_loader.dataset) / (c.batch_size * num_gpus))
    else:
        batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
    end_time = time.time()
    c_logger.print_train_start()
    for num_iter, data in enumerate(data_loader):
        start_time = time.time()

        # format data
        c_G, y_G, c_D, y_D = format_data(data)
        loader_time = time.time() - end_time

        global_step += 1

        ##############################
        # GENERATOR
        ##############################

        # generator pass
        y_hat = model_G(c_G)
        y_hat_sub = None
        y_G_sub = None
        y_hat_vis = y_hat  # for visualization

        # PQMF formatting
        if y_hat.shape[1] > 1:
            y_hat_sub = y_hat
            y_hat = model_G.pqmf_synthesis(y_hat)
            y_hat_vis = y_hat
            y_G_sub = model_G.pqmf_analysis(y_G)

        scores_fake, feats_fake, feats_real = None, None, None
        if global_step > c.steps_to_start_discriminator:

            # run D with or without cond. features
            if len(signature(model_D.forward).parameters) == 2:
                D_out_fake = model_D(y_hat, c_G)
            else:
                D_out_fake = model_D(y_hat)
            D_out_real = None

            if c.use_feat_match_loss:
                with torch.no_grad():
                    D_out_real = model_D(y_G)

            # format D outputs
            if isinstance(D_out_fake, tuple):
                scores_fake, feats_fake = D_out_fake
                if D_out_real is None:
                    feats_real = None
                else:
                    _, feats_real = D_out_real
            else:
                scores_fake = D_out_fake

        # compute losses
        loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake,
                                  feats_real, y_hat_sub, y_G_sub)
        loss_G = loss_G_dict['G_loss']

        # optimizer generator
        optimizer_G.zero_grad()
        loss_G.backward()
        if c.gen_clip_grad > 0:
            torch.nn.utils.clip_grad_norm_(model_G.parameters(),
                                           c.gen_clip_grad)
        optimizer_G.step()
        if scheduler_G is not None:
            scheduler_G.step()

        loss_dict = dict()
        for key, value in loss_G_dict.items():
            if isinstance(value, int):
                loss_dict[key] = value
            else:
                loss_dict[key] = value.item()

        ##############################
        # DISCRIMINATOR
        ##############################
        if global_step >= c.steps_to_start_discriminator:
            # discriminator pass
            with torch.no_grad():
                y_hat = model_G(c_D)

            # PQMF formatting
            if y_hat.shape[1] > 1:
                y_hat = model_G.pqmf_synthesis(y_hat)

            # run D with or without cond. features
            if len(signature(model_D.forward).parameters) == 2:
                D_out_fake = model_D(y_hat.detach(), c_D)
                D_out_real = model_D(y_D, c_D)
            else:
                D_out_fake = model_D(y_hat.detach())
                D_out_real = model_D(y_D)

            # format D outputs
            if isinstance(D_out_fake, tuple):
                scores_fake, feats_fake = D_out_fake
                if D_out_real is None:
                    scores_real, feats_real = None, None
                else:
                    scores_real, feats_real = D_out_real
            else:
                scores_fake = D_out_fake
                scores_real = D_out_real

            # compute losses
            loss_D_dict = criterion_D(scores_fake, scores_real)
            loss_D = loss_D_dict['D_loss']

            # optimizer discriminator
            optimizer_D.zero_grad()
            loss_D.backward()
            if c.disc_clip_grad > 0:
                torch.nn.utils.clip_grad_norm_(model_D.parameters(),
                                               c.disc_clip_grad)
            optimizer_D.step()
            if scheduler_D is not None:
                scheduler_D.step()

            for key, value in loss_D_dict.items():
                if isinstance(value, (int, float)):
                    loss_dict[key] = value
                else:
                    loss_dict[key] = value.item()

        step_time = time.time() - start_time
        epoch_time += step_time

        # get current learning rates
        current_lr_G = list(optimizer_G.param_groups)[0]['lr']
        current_lr_D = list(optimizer_D.param_groups)[0]['lr']

        # update avg stats
        update_train_values = dict()
        for key, value in loss_dict.items():
            update_train_values['avg_' + key] = value
        update_train_values['avg_loader_time'] = loader_time
        update_train_values['avg_step_time'] = step_time
        keep_avg.update_values(update_train_values)

        # print training stats
        if global_step % c.print_step == 0:
            log_dict = {
                'step_time': [step_time, 2],
                'loader_time': [loader_time, 4],
                "current_lr_G": current_lr_G,
                "current_lr_D": current_lr_D
            }
            c_logger.print_train_step(batch_n_iter, num_iter, global_step,
                                      log_dict, loss_dict, keep_avg.avg_values)

        if args.rank == 0:
            # plot step stats
            if global_step % 10 == 0:
                iter_stats = {
                    "lr_G": current_lr_G,
                    "lr_D": current_lr_D,
                    "step_time": step_time
                }
                iter_stats.update(loss_dict)
                tb_logger.tb_train_iter_stats(global_step, iter_stats)

            # save checkpoint
            if global_step % c.save_step == 0:
                if c.checkpoint:
                    # save model
                    save_checkpoint(model_G,
                                    optimizer_G,
                                    scheduler_G,
                                    model_D,
                                    optimizer_D,
                                    scheduler_D,
                                    global_step,
                                    epoch,
                                    OUT_PATH,
                                    model_losses=loss_dict)

                # compute spectrograms
                figures = plot_results(y_hat_vis, y_G, ap, global_step,
                                    'train')
                tb_logger.tb_train_figures(global_step, figures)

                # Sample audio
                sample_voice = y_hat_vis[0].squeeze(0).detach().cpu().numpy()
                tb_logger.tb_train_audios(global_step,
                                        {'train/audio': sample_voice},
                                        c.audio["sample_rate"])
        end_time = time.time()

    # print epoch stats
    c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)

    # Plot Training Epoch Stats
    epoch_stats = {"epoch_time": epoch_time}
    epoch_stats.update(keep_avg.avg_values)
    if args.rank == 0:
        tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
    # TODO: plot model stats
    # if c.tb_model_param_stats:
    # tb_logger.tb_model_weights(model, global_step)
    return keep_avg.avg_values, global_step


@torch.no_grad()
def evaluate(model_G, criterion_G, model_D, criterion_D, ap, global_step, epoch):
    data_loader = setup_loader(ap, is_val=True, verbose=(epoch == 0))
    model_G.eval()
    model_D.eval()
    epoch_time = 0
    keep_avg = KeepAverage()
    end_time = time.time()
    c_logger.print_eval_start()
    for num_iter, data in enumerate(data_loader):
        start_time = time.time()

        # format data
        c_G, y_G, _, _ = format_data(data)
        loader_time = time.time() - end_time

        global_step += 1

        ##############################
        # GENERATOR
        ##############################

        # generator pass
        y_hat = model_G(c_G)
        y_hat_sub = None
        y_G_sub = None

        # PQMF formatting
        if y_hat.shape[1] > 1:
            y_hat_sub = y_hat
            y_hat = model_G.pqmf_synthesis(y_hat)
            y_G_sub = model_G.pqmf_analysis(y_G)

        scores_fake, feats_fake, feats_real = None, None, None
        if global_step > c.steps_to_start_discriminator:

            if len(signature(model_D.forward).parameters) == 2:
                D_out_fake = model_D(y_hat, c_G)
            else:
                D_out_fake = model_D(y_hat)
            D_out_real = None

            if c.use_feat_match_loss:
                with torch.no_grad():
                    D_out_real = model_D(y_G)

            # format D outputs
            if isinstance(D_out_fake, tuple):
                scores_fake, feats_fake = D_out_fake
                if D_out_real is None:
                    feats_real = None
                else:
                    _, feats_real = D_out_real
            else:
                scores_fake = D_out_fake
                feats_fake, feats_real = None, None

        # compute losses
        loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake,
                                  feats_real, y_hat_sub, y_G_sub)

        loss_dict = dict()
        for key, value in loss_G_dict.items():
            if isinstance(value, (int, float)):
                loss_dict[key] = value
            else:
                loss_dict[key] = value.item()

        ##############################
        # DISCRIMINATOR
        ##############################

        if global_step >= c.steps_to_start_discriminator:
            # discriminator pass
            with torch.no_grad():
                y_hat = model_G(c_G)

            # PQMF formatting
            if y_hat.shape[1] > 1:
                y_hat = model_G.pqmf_synthesis(y_hat)

            # run D with or without cond. features
            if len(signature(model_D.forward).parameters) == 2:
                D_out_fake = model_D(y_hat.detach(), c_G)
                D_out_real = model_D(y_G, c_G)
            else:
                D_out_fake = model_D(y_hat.detach())
                D_out_real = model_D(y_G)

            # format D outputs
            if isinstance(D_out_fake, tuple):
                scores_fake, feats_fake = D_out_fake
                if D_out_real is None:
                    scores_real, feats_real = None, None
                else:
                    scores_real, feats_real = D_out_real
            else:
                scores_fake = D_out_fake
                scores_real = D_out_real

            # compute losses
            loss_D_dict = criterion_D(scores_fake, scores_real)

            for key, value in loss_D_dict.items():
                if isinstance(value, (int, float)):
                    loss_dict[key] = value
                else:
                    loss_dict[key] = value.item()

        step_time = time.time() - start_time
        epoch_time += step_time

        # update avg stats
        update_eval_values = dict()
        for key, value in loss_dict.items():
            update_eval_values['avg_' + key] = value
        update_eval_values['avg_loader_time'] = loader_time
        update_eval_values['avg_step_time'] = step_time
        keep_avg.update_values(update_eval_values)

        # print eval stats
        if c.print_eval:
            c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)

    if args.rank == 0:
        # compute spectrograms
        figures = plot_results(y_hat, y_G, ap, global_step, 'eval')
        tb_logger.tb_eval_figures(global_step, figures)

        # Sample audio
        sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
        tb_logger.tb_eval_audios(global_step, {'eval/audio': sample_voice},
                                c.audio["sample_rate"])

        tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)

     # synthesize a full voice
    data_loader.return_segments = False

    return keep_avg.avg_values


# FIXME: move args definition/parsing inside of main?
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global train_data, eval_data
    print(f" > Loading wavs from: {c.data_path}")
    if c.feature_path is not None:
        print(f" > Loading features from: {c.feature_path}")
        eval_data, train_data = load_wav_feat_data(
            c.data_path, c.feature_path, c.eval_split_size)
    else:
        eval_data, train_data = load_wav_data(c.data_path, c.eval_split_size)

    # setup audio processor
    ap = AudioProcessor(**c.audio)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])

    # setup models
    model_gen = setup_generator(c)
    model_disc = setup_discriminator(c)

    # setup optimizers
    optimizer_gen = RAdam(model_gen.parameters(), lr=c.lr_gen, weight_decay=0)
    optimizer_disc = RAdam(model_disc.parameters(),
                           lr=c.lr_disc,
                           weight_decay=0)

    # schedulers
    scheduler_gen = None
    scheduler_disc = None
    if 'lr_scheduler_gen' in c:
        scheduler_gen = getattr(torch.optim.lr_scheduler, c.lr_scheduler_gen)
        scheduler_gen = scheduler_gen(
            optimizer_gen, **c.lr_scheduler_gen_params)
    if 'lr_scheduler_disc' in c:
        scheduler_disc = getattr(torch.optim.lr_scheduler, c.lr_scheduler_disc)
        scheduler_disc = scheduler_disc(
            optimizer_disc, **c.lr_scheduler_disc_params)

    # setup criterion
    criterion_gen = GeneratorLoss(c)
    criterion_disc = DiscriminatorLoss(c)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            print(" > Restoring Generator Model...")
            model_gen.load_state_dict(checkpoint['model'])
            print(" > Restoring Generator Optimizer...")
            optimizer_gen.load_state_dict(checkpoint['optimizer'])
            print(" > Restoring Discriminator Model...")
            model_disc.load_state_dict(checkpoint['model_disc'])
            print(" > Restoring Discriminator Optimizer...")
            optimizer_disc.load_state_dict(checkpoint['optimizer_disc'])
            if 'scheduler' in checkpoint:
                print(" > Restoring Generator LR Scheduler...")
                scheduler_gen.load_state_dict(checkpoint['scheduler'])
                # NOTE: Not sure if necessary
                scheduler_gen.optimizer = optimizer_gen
            if 'scheduler_disc' in checkpoint:
                print(" > Restoring Discriminator LR Scheduler...")
                scheduler_disc.load_state_dict(checkpoint['scheduler_disc'])
                scheduler_disc.optimizer = optimizer_disc
        except RuntimeError:
            # retore only matching layers.
            print(" > Partial model initialization...")
            model_dict = model_gen.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model_gen.load_state_dict(model_dict)

            model_dict = model_disc.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model_disc'], c)
            model_disc.load_state_dict(model_dict)
            del model_dict

        # reset lr if not countinuining training.
        for group in optimizer_gen.param_groups:
            group['lr'] = c.lr_gen

        for group in optimizer_disc.param_groups:
            group['lr'] = c.lr_disc

        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model_gen.cuda()
        criterion_gen.cuda()
        model_disc.cuda()
        criterion_disc.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model_gen = DDP_th(model_gen, device_ids=[args.rank])
        model_disc = DDP_th(model_disc, device_ids=[args.rank])

    num_params = count_parameters(model_gen)
    print(" > Generator has {} parameters".format(num_params), flush=True)
    num_params = count_parameters(model_disc)
    print(" > Discriminator has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        _, global_step = train(model_gen, criterion_gen, optimizer_gen,
                               model_disc, criterion_disc, optimizer_disc,
                               scheduler_gen, scheduler_disc, ap, global_step,
                               epoch)
        eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc, criterion_disc, ap,
                                      global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = eval_avg_loss_dict[c.target_loss]
        best_loss = save_best_model(target_loss,
                                    best_loss,
                                    model_gen,
                                    optimizer_gen,
                                    scheduler_gen,
                                    model_disc,
                                    optimizer_disc,
                                    scheduler_disc,
                                    global_step,
                                    epoch,
                                    OUT_PATH,
                                    model_losses=eval_avg_loss_dict)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--continue_path',
        type=str,
        help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
        default='',
        required='--config_path' not in sys.argv)
    parser.add_argument(
        '--restore_path',
        type=str,
        help='Model file to be restored. Use to finetune a model.',
        default='')
    parser.add_argument('--config_path',
                        type=str,
                        help='Path to config file for training.',
                        required='--continue_path' not in sys.argv)
    parser.add_argument('--debug',
                        type=bool,
                        default=False,
                        help='Do not verify commit integrity to run training.')

    # DISTRUBUTED
    parser.add_argument(
        '--rank',
        type=int,
        default=0,
        help='DISTRIBUTED: process rank for distributed training.')
    parser.add_argument('--group_id',
                        type=str,
                        default="",
                        help='DISTRIBUTED: process group id.')
    args = parser.parse_args()

    if args.continue_path != '':
        args.output_path = args.continue_path
        args.config_path = os.path.join(args.continue_path, 'config.json')
        list_of_files = glob.glob(
            args.continue_path +
            "/*.pth.tar")  # * means all if need specific format then *.csv
        latest_model_file = max(list_of_files, key=os.path.getctime)
        args.restore_path = latest_model_file
        print(f" > Training continues for {args.restore_path}")

    # setup output paths and read configs
    c = load_config(args.config_path)
    # check_config(c)
    _ = os.path.dirname(os.path.realpath(__file__))

    OUT_PATH = args.continue_path
    if args.continue_path == '':
        OUT_PATH = create_experiment_folder(c.output_path, c.run_name,
                                            args.debug)

    AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')

    c_logger = ConsoleLogger()

    if args.rank == 0:
        os.makedirs(AUDIO_PATH, exist_ok=True)
        new_fields = {}
        if args.restore_path:
            new_fields["restore_path"] = args.restore_path
        new_fields["github_branch"] = get_git_branch()
        copy_model_files(c,  args.config_path,
                         OUT_PATH, new_fields)
        os.chmod(AUDIO_PATH, 0o775)
        os.chmod(OUT_PATH, 0o775)

        LOG_DIR = OUT_PATH
        tb_logger = TensorboardLogger(LOG_DIR, model_name='VOCODER')

        # write model desc to tensorboard
        tb_logger.tb_add_text('model-description', c['run_description'], 0)

    try:
        main(args)
    except KeyboardInterrupt:
        remove_experiment_folder(OUT_PATH)
        try:
            sys.exit(0)
        except SystemExit:
            os._exit(0)  # pylint: disable=protected-access
    except Exception:  # pylint: disable=broad-except
        remove_experiment_folder(OUT_PATH)
        traceback.print_exc()
        sys.exit(1)