File size: 31,270 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import argparse
import glob
import os
import sys
import time
import traceback
from random import randrange

import numpy as np
import torch
from torch.utils.data import DataLoader
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import TacotronLoss
from TTS.tts.utils.generic_utils import check_config_tts, setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import (DistributedSampler, apply_gradient_allreduce,
                                  init_distributed, reduce_tensor)
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
                                     create_experiment_folder, get_git_branch,
                                     remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import (NoamLR, adam_weight_decay, check_update,
                                gradual_training_scheduler, set_weight_decay,
                                setup_torch_training_env)

use_cuda, num_gpus = setup_torch_training_env(True, False)


def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
    if is_val and not c.run_eval:
        loader = None
    else:
        if dataset is None:
            dataset = MyDataset(
                r,
                c.text_cleaner,
                compute_linear_spec=c.model.lower() == 'tacotron',
                meta_data=meta_data_eval if is_val else meta_data_train,
                ap=ap,
                tp=c.characters if 'characters' in c.keys() else None,
                add_blank=c['add_blank'] if 'add_blank' in c.keys() else False,
                batch_group_size=0 if is_val else c.batch_group_size *
                c.batch_size,
                min_seq_len=c.min_seq_len,
                max_seq_len=c.max_seq_len,
                phoneme_cache_path=c.phoneme_cache_path,
                use_phonemes=c.use_phonemes,
                phoneme_language=c.phoneme_language,
                enable_eos_bos=c.enable_eos_bos_chars,
                verbose=verbose,
                speaker_mapping=speaker_mapping if c.use_speaker_embedding and c.use_external_speaker_embedding_file else None)

            if c.use_phonemes and c.compute_input_seq_cache:
                # precompute phonemes to have a better estimate of sequence lengths.
                dataset.compute_input_seq(c.num_loader_workers)
            dataset.sort_items()

        sampler = DistributedSampler(dataset) if num_gpus > 1 else None
        loader = DataLoader(
            dataset,
            batch_size=c.eval_batch_size if is_val else c.batch_size,
            shuffle=False,
            collate_fn=dataset.collate_fn,
            drop_last=False,
            sampler=sampler,
            num_workers=c.num_val_loader_workers
            if is_val else c.num_loader_workers,
            pin_memory=False)
    return loader

def format_data(data):
    # setup input data
    text_input = data[0]
    text_lengths = data[1]
    speaker_names = data[2]
    linear_input = data[3] if c.model in ["Tacotron"] else None
    mel_input = data[4]
    mel_lengths = data[5]
    stop_targets = data[6]
    max_text_length = torch.max(text_lengths.float())
    max_spec_length = torch.max(mel_lengths.float())

    if c.use_speaker_embedding:
        if c.use_external_speaker_embedding_file:
            speaker_embeddings = data[8]
            speaker_ids = None
        else:
            speaker_ids = [
                speaker_mapping[speaker_name] for speaker_name in speaker_names
            ]
            speaker_ids = torch.LongTensor(speaker_ids)
            speaker_embeddings = None
    else:
        speaker_embeddings = None
        speaker_ids = None


    # set stop targets view, we predict a single stop token per iteration.
    stop_targets = stop_targets.view(text_input.shape[0],
                                     stop_targets.size(1) // c.r, -1)
    stop_targets = (stop_targets.sum(2) >
                    0.0).unsqueeze(2).float().squeeze(2)

    # dispatch data to GPU
    if use_cuda:
        text_input = text_input.cuda(non_blocking=True)
        text_lengths = text_lengths.cuda(non_blocking=True)
        mel_input = mel_input.cuda(non_blocking=True)
        mel_lengths = mel_lengths.cuda(non_blocking=True)
        linear_input = linear_input.cuda(non_blocking=True) if c.model in ["Tacotron"] else None
        stop_targets = stop_targets.cuda(non_blocking=True)
        if speaker_ids is not None:
            speaker_ids = speaker_ids.cuda(non_blocking=True)
        if speaker_embeddings is not None:
            speaker_embeddings = speaker_embeddings.cuda(non_blocking=True)

    return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length


def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler,
          ap, global_step, epoch, scaler, scaler_st):
    model.train()
    epoch_time = 0
    keep_avg = KeepAverage()
    if use_cuda:
        batch_n_iter = int(
            len(data_loader.dataset) / (c.batch_size * num_gpus))
    else:
        batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
    end_time = time.time()
    c_logger.print_train_start()
    for num_iter, data in enumerate(data_loader):
        start_time = time.time()

        # format data
        text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length = format_data(data)
        loader_time = time.time() - end_time

        global_step += 1

        # setup lr
        if c.noam_schedule:
            scheduler.step()

        optimizer.zero_grad()
        if optimizer_st:
            optimizer_st.zero_grad()

        with torch.cuda.amp.autocast(enabled=c.mixed_precision):
            # forward pass model
            if c.bidirectional_decoder or c.double_decoder_consistency:
                decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
                    text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
            else:
                decoder_output, postnet_output, alignments, stop_tokens = model(
                    text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
                decoder_backward_output = None
                alignments_backward = None

            # set the [alignment] lengths wrt reduction factor for guided attention
            if mel_lengths.max() % model.decoder.r != 0:
                alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
            else:
                alignment_lengths = mel_lengths //  model.decoder.r

            # compute loss
            loss_dict = criterion(postnet_output, decoder_output, mel_input,
                                linear_input, stop_tokens, stop_targets,
                                mel_lengths, decoder_backward_output,
                                alignments, alignment_lengths, alignments_backward,
                                text_lengths)

        # check nan loss
        if torch.isnan(loss_dict['loss']).any():
            raise RuntimeError(f'Detected NaN loss at step {global_step}.')

        # optimizer step
        if c.mixed_precision:
            # model optimizer step in mixed precision mode
            scaler.scale(loss_dict['loss']).backward()
            scaler.unscale_(optimizer)
            optimizer, current_lr = adam_weight_decay(optimizer)
            grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
            scaler.step(optimizer)
            scaler.update()

            # stopnet optimizer step
            if c.separate_stopnet:
                scaler_st.scale( loss_dict['stopnet_loss']).backward()
                scaler.unscale_(optimizer_st)
                optimizer_st, _ = adam_weight_decay(optimizer_st)
                grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
                scaler_st.step(optimizer)
                scaler_st.update()
            else:
                grad_norm_st = 0
        else:
            # main model optimizer step
            loss_dict['loss'].backward()
            optimizer, current_lr = adam_weight_decay(optimizer)
            grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
            optimizer.step()

            # stopnet optimizer step
            if c.separate_stopnet:
                loss_dict['stopnet_loss'].backward()
                optimizer_st, _ = adam_weight_decay(optimizer_st)
                grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
                optimizer_st.step()
            else:
                grad_norm_st = 0

        # compute alignment error (the lower the better )
        align_error = 1 - alignment_diagonal_score(alignments)
        loss_dict['align_error'] = align_error

        step_time = time.time() - start_time
        epoch_time += step_time

        # aggregate losses from processes
        if num_gpus > 1:
            loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
            loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
            loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
            loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if c.stopnet else loss_dict['stopnet_loss']

        # detach loss values
        loss_dict_new = dict()
        for key, value in loss_dict.items():
            if isinstance(value, (int, float)):
                loss_dict_new[key] = value
            else:
                loss_dict_new[key] = value.item()
        loss_dict = loss_dict_new

        # update avg stats
        update_train_values = dict()
        for key, value in loss_dict.items():
            update_train_values['avg_' + key] = value
        update_train_values['avg_loader_time'] = loader_time
        update_train_values['avg_step_time'] = step_time
        keep_avg.update_values(update_train_values)

        # print training progress
        if global_step % c.print_step == 0:
            log_dict = {
                "max_spec_length": [max_spec_length, 1],  # value, precision
                "max_text_length": [max_text_length, 1],
                "step_time": [step_time, 4],
                "loader_time": [loader_time, 2],
                "current_lr": current_lr,
            }
            c_logger.print_train_step(batch_n_iter, num_iter, global_step,
                                      log_dict, loss_dict, keep_avg.avg_values)

        if args.rank == 0:
            # Plot Training Iter Stats
            # reduce TB load
            if global_step % c.tb_plot_step == 0:
                iter_stats = {
                    "lr": current_lr,
                    "grad_norm": grad_norm,
                    "grad_norm_st": grad_norm_st,
                    "step_time": step_time
                }
                iter_stats.update(loss_dict)
                tb_logger.tb_train_iter_stats(global_step, iter_stats)

            if global_step % c.save_step == 0:
                if c.checkpoint:
                    # save model
                    save_checkpoint(model, optimizer, global_step, epoch, model.decoder.r, OUT_PATH,
                                    optimizer_st=optimizer_st,
                                    model_loss=loss_dict['postnet_loss'],
                                    scaler=scaler.state_dict() if c.mixed_precision else None)

                # Diagnostic visualizations
                const_spec = postnet_output[0].data.cpu().numpy()
                gt_spec = linear_input[0].data.cpu().numpy() if c.model in [
                    "Tacotron", "TacotronGST"
                ] else mel_input[0].data.cpu().numpy()
                align_img = alignments[0].data.cpu().numpy()

                figures = {
                    "prediction": plot_spectrogram(const_spec, ap, output_fig=False),
                    "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
                    "alignment": plot_alignment(align_img, output_fig=False),
                }

                if c.bidirectional_decoder or c.double_decoder_consistency:
                    figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False)

                tb_logger.tb_train_figures(global_step, figures)

                # Sample audio
                if c.model in ["Tacotron", "TacotronGST"]:
                    train_audio = ap.inv_spectrogram(const_spec.T)
                else:
                    train_audio = ap.inv_melspectrogram(const_spec.T)
                tb_logger.tb_train_audios(global_step,
                                          {'TrainAudio': train_audio},
                                          c.audio["sample_rate"])
        end_time = time.time()

    # print epoch stats
    c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)

    # Plot Epoch Stats
    if args.rank == 0:
        epoch_stats = {"epoch_time": epoch_time}
        epoch_stats.update(keep_avg.avg_values)
        tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
        if c.tb_model_param_stats:
            tb_logger.tb_model_weights(model, global_step)
    return keep_avg.avg_values, global_step


@torch.no_grad()
def evaluate(data_loader, model, criterion, ap, global_step, epoch):
    model.eval()
    epoch_time = 0
    keep_avg = KeepAverage()
    c_logger.print_eval_start()
    if data_loader is not None:
        for num_iter, data in enumerate(data_loader):
            start_time = time.time()

            # format data
            text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, _, _ = format_data(data)
            assert mel_input.shape[1] % model.decoder.r == 0

            # forward pass model
            if c.bidirectional_decoder or c.double_decoder_consistency:
                decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
                    text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
            else:
                decoder_output, postnet_output, alignments, stop_tokens = model(
                    text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
                decoder_backward_output = None
                alignments_backward = None

            # set the alignment lengths wrt reduction factor for guided attention
            if mel_lengths.max() % model.decoder.r != 0:
                alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
            else:
                alignment_lengths = mel_lengths //  model.decoder.r

            # compute loss
            loss_dict = criterion(postnet_output, decoder_output, mel_input,
                                  linear_input, stop_tokens, stop_targets,
                                  mel_lengths, decoder_backward_output,
                                  alignments, alignment_lengths, alignments_backward,
                                  text_lengths)

            # step time
            step_time = time.time() - start_time
            epoch_time += step_time

            # compute alignment score
            align_error = 1 - alignment_diagonal_score(alignments)
            loss_dict['align_error'] = align_error

            # aggregate losses from processes
            if num_gpus > 1:
                loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
                loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
                if c.stopnet:
                    loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus)

            # detach loss values
            loss_dict_new = dict()
            for key, value in loss_dict.items():
                if isinstance(value, (int, float)):
                    loss_dict_new[key] = value
                else:
                    loss_dict_new[key] = value.item()
            loss_dict = loss_dict_new

            # update avg stats
            update_train_values = dict()
            for key, value in loss_dict.items():
                update_train_values['avg_' + key] = value
            keep_avg.update_values(update_train_values)

            if c.print_eval:
                c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)

        if args.rank == 0:
            # Diagnostic visualizations
            idx = np.random.randint(mel_input.shape[0])
            const_spec = postnet_output[idx].data.cpu().numpy()
            gt_spec = linear_input[idx].data.cpu().numpy() if c.model in [
                "Tacotron", "TacotronGST"
            ] else mel_input[idx].data.cpu().numpy()
            align_img = alignments[idx].data.cpu().numpy()

            eval_figures = {
                "prediction": plot_spectrogram(const_spec, ap, output_fig=False),
                "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
                "alignment": plot_alignment(align_img, output_fig=False)
            }

            # Sample audio
            if c.model in ["Tacotron", "TacotronGST"]:
                eval_audio = ap.inv_spectrogram(const_spec.T)
            else:
                eval_audio = ap.inv_melspectrogram(const_spec.T)
            tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
                                     c.audio["sample_rate"])

            # Plot Validation Stats

            if c.bidirectional_decoder or c.double_decoder_consistency:
                align_b_img = alignments_backward[idx].data.cpu().numpy()
                eval_figures['alignment2'] = plot_alignment(align_b_img, output_fig=False)
            tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
            tb_logger.tb_eval_figures(global_step, eval_figures)

    if args.rank == 0 and epoch > c.test_delay_epochs:
        if c.test_sentences_file is None:
            test_sentences = [
                "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
                "Be a voice, not an echo.",
                "I'm sorry Dave. I'm afraid I can't do that.",
                "This cake is great. It's so delicious and moist.",
                "Prior to November 22, 1963."
            ]
        else:
            with open(c.test_sentences_file, "r") as f:
                test_sentences = [s.strip() for s in f.readlines()]

        # test sentences
        test_audios = {}
        test_figures = {}
        print(" | > Synthesizing test sentences")
        speaker_id = 0 if c.use_speaker_embedding else None
        speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding'] if c.use_external_speaker_embedding_file and c.use_speaker_embedding else None
        style_wav = c.get("gst_style_input")
        if style_wav is None and c.use_gst:
            # inicialize GST with zero dict.
            style_wav = {}
            print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!")
            for i in range(c.gst['gst_style_tokens']):
                style_wav[str(i)] = 0
        style_wav = c.get("gst_style_input")
        for idx, test_sentence in enumerate(test_sentences):
            try:
                wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis(
                    model,
                    test_sentence,
                    c,
                    use_cuda,
                    ap,
                    speaker_id=speaker_id,
                    speaker_embedding=speaker_embedding,
                    style_wav=style_wav,
                    truncated=False,
                    enable_eos_bos_chars=c.enable_eos_bos_chars, #pylint: disable=unused-argument
                    use_griffin_lim=True,
                    do_trim_silence=False)

                file_path = os.path.join(AUDIO_PATH, str(global_step))
                os.makedirs(file_path, exist_ok=True)
                file_path = os.path.join(file_path,
                                         "TestSentence_{}.wav".format(idx))
                ap.save_wav(wav, file_path)
                test_audios['{}-audio'.format(idx)] = wav
                test_figures['{}-prediction'.format(idx)] = plot_spectrogram(
                    postnet_output, ap, output_fig=False)
                test_figures['{}-alignment'.format(idx)] = plot_alignment(
                    alignment, output_fig=False)
            except:  #pylint: disable=bare-except
                print(" !! Error creating Test Sentence -", idx)
                traceback.print_exc()
        tb_logger.tb_test_audios(global_step, test_audios,
                                 c.audio['sample_rate'])
        tb_logger.tb_test_figures(global_step, test_figures)
    return keep_avg.avg_values


# FIXME: move args definition/parsing inside of main?
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if 'train_portion' in c.keys():
        meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)]
    if 'eval_portion' in c.keys():
        meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)

    model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)

    # scalers for mixed precision training
    scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
    scaler_st = torch.cuda.amp.GradScaler() if c.mixed_precision and c.separate_stopnet else None

    params = set_weight_decay(model, c.wd)
    optimizer = RAdam(params, lr=c.lr, weight_decay=0)
    if c.stopnet and c.separate_stopnet:
        optimizer_st = RAdam(model.decoder.stopnet.parameters(),
                             lr=c.lr,
                             weight_decay=0)
    else:
        optimizer_st = None

    # setup criterion
    criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4)

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            print(" > Restoring Model.")
            model.load_state_dict(checkpoint['model'])
            # optimizer restore
            print(" > Restoring Optimizer.")
            optimizer.load_state_dict(checkpoint['optimizer'])
            if "scaler" in checkpoint and c.mixed_precision:
                print(" > Restoring AMP Scaler...")
                scaler.load_state_dict(checkpoint["scaler"])
            if c.reinit_layers:
                raise RuntimeError
        except (KeyError, RuntimeError):
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            # torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt'))
            # print("State Dict saved for debug in: ", os.path.join(OUT_PATH, 'state_dict.pt'))
            model.load_state_dict(model_dict)
            del model_dict

        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    # define data loaders
    train_loader = setup_loader(ap,
                                model.decoder.r,
                                is_val=False,
                                verbose=True)
    eval_loader = setup_loader(ap, model.decoder.r, is_val=True)

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        # set gradual training
        if c.gradual_training is not None:
            r, c.batch_size = gradual_training_scheduler(global_step, c)
            c.r = r
            model.decoder.set_r(r)
            if c.bidirectional_decoder:
                model.decoder_backward.set_r(r)
            train_loader.dataset.outputs_per_step = r
            eval_loader.dataset.outputs_per_step = r
            train_loader = setup_loader(ap,
                                        model.decoder.r,
                                        is_val=False,
                                        dataset=train_loader.dataset)
            eval_loader = setup_loader(ap,
                                       model.decoder.r,
                                       is_val=True,
                                       dataset=eval_loader.dataset)
            print("\n > Number of output frames:", model.decoder.r)
        # train one epoch
        train_avg_loss_dict, global_step = train(train_loader, model,
                                                 criterion, optimizer,
                                                 optimizer_st, scheduler, ap,
                                                 global_step, epoch, scaler,
                                                 scaler_st)
        # eval one epoch
        eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
                                      global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_postnet_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_postnet_loss']
        best_loss = save_best_model(
            target_loss,
            best_loss,
            model,
            optimizer,
            global_step,
            epoch,
            c.r,
            OUT_PATH,
            scaler=scaler.state_dict() if c.mixed_precision else None)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--continue_path',
        type=str,
        help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
        default='',
        required='--config_path' not in sys.argv)
    parser.add_argument(
        '--restore_path',
        type=str,
        help='Model file to be restored. Use to finetune a model.',
        default='')
    parser.add_argument(
        '--config_path',
        type=str,
        help='Path to config file for training.',
        required='--continue_path' not in sys.argv
    )
    parser.add_argument('--debug',
                        type=bool,
                        default=False,
                        help='Do not verify commit integrity to run training.')

    # DISTRUBUTED
    parser.add_argument(
        '--rank',
        type=int,
        default=0,
        help='DISTRIBUTED: process rank for distributed training.')
    parser.add_argument('--group_id',
                        type=str,
                        default="",
                        help='DISTRIBUTED: process group id.')
    args = parser.parse_args()

    if args.continue_path != '':
        print(f" > Training continues for {args.continue_path}")
        args.output_path = args.continue_path
        args.config_path = os.path.join(args.continue_path, 'config.json')
        list_of_files = glob.glob(args.continue_path + "/*.pth.tar") # * means all if need specific format then *.csv
        latest_model_file = max(list_of_files, key=os.path.getctime)
        args.restore_path = latest_model_file

    # setup output paths and read configs
    c = load_config(args.config_path)
    check_config_tts(c)
    _ = os.path.dirname(os.path.realpath(__file__))

    if c.mixed_precision:
        print("   >  Mixed precision mode is ON")

    OUT_PATH = args.continue_path
    if args.continue_path == '':
        OUT_PATH = create_experiment_folder(c.output_path, c.run_name, args.debug)

    AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')

    c_logger = ConsoleLogger()

    if args.rank == 0:
        os.makedirs(AUDIO_PATH, exist_ok=True)
        new_fields = {}
        if args.restore_path:
            new_fields["restore_path"] = args.restore_path
        new_fields["github_branch"] = get_git_branch()
        copy_model_files(c,  args.config_path,
                         OUT_PATH, new_fields)
        os.chmod(AUDIO_PATH, 0o775)
        os.chmod(OUT_PATH, 0o775)

        LOG_DIR = OUT_PATH
        tb_logger = TensorboardLogger(LOG_DIR, model_name='TTS')

        # write model desc to tensorboard
        tb_logger.tb_add_text('model-description', c['run_description'], 0)

    try:
        main(args)
    except KeyboardInterrupt:
        remove_experiment_folder(OUT_PATH)
        try:
            sys.exit(0)
        except SystemExit:
            os._exit(0)  # pylint: disable=protected-access
    except Exception:  # pylint: disable=broad-except
        remove_experiment_folder(OUT_PATH)
        traceback.print_exc()
        sys.exit(1)