File size: 31,270 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import glob
import os
import sys
import time
import traceback
from random import randrange
import numpy as np
import torch
from torch.utils.data import DataLoader
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import TacotronLoss
from TTS.tts.utils.generic_utils import check_config_tts, setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import (DistributedSampler, apply_gradient_allreduce,
init_distributed, reduce_tensor)
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import (NoamLR, adam_weight_decay, check_update,
gradual_training_scheduler, set_weight_decay,
setup_torch_training_env)
use_cuda, num_gpus = setup_torch_training_env(True, False)
def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
if is_val and not c.run_eval:
loader = None
else:
if dataset is None:
dataset = MyDataset(
r,
c.text_cleaner,
compute_linear_spec=c.model.lower() == 'tacotron',
meta_data=meta_data_eval if is_val else meta_data_train,
ap=ap,
tp=c.characters if 'characters' in c.keys() else None,
add_blank=c['add_blank'] if 'add_blank' in c.keys() else False,
batch_group_size=0 if is_val else c.batch_group_size *
c.batch_size,
min_seq_len=c.min_seq_len,
max_seq_len=c.max_seq_len,
phoneme_cache_path=c.phoneme_cache_path,
use_phonemes=c.use_phonemes,
phoneme_language=c.phoneme_language,
enable_eos_bos=c.enable_eos_bos_chars,
verbose=verbose,
speaker_mapping=speaker_mapping if c.use_speaker_embedding and c.use_external_speaker_embedding_file else None)
if c.use_phonemes and c.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
dataset.compute_input_seq(c.num_loader_workers)
dataset.sort_items()
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=c.eval_batch_size if is_val else c.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=sampler,
num_workers=c.num_val_loader_workers
if is_val else c.num_loader_workers,
pin_memory=False)
return loader
def format_data(data):
# setup input data
text_input = data[0]
text_lengths = data[1]
speaker_names = data[2]
linear_input = data[3] if c.model in ["Tacotron"] else None
mel_input = data[4]
mel_lengths = data[5]
stop_targets = data[6]
max_text_length = torch.max(text_lengths.float())
max_spec_length = torch.max(mel_lengths.float())
if c.use_speaker_embedding:
if c.use_external_speaker_embedding_file:
speaker_embeddings = data[8]
speaker_ids = None
else:
speaker_ids = [
speaker_mapping[speaker_name] for speaker_name in speaker_names
]
speaker_ids = torch.LongTensor(speaker_ids)
speaker_embeddings = None
else:
speaker_embeddings = None
speaker_ids = None
# set stop targets view, we predict a single stop token per iteration.
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) >
0.0).unsqueeze(2).float().squeeze(2)
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda(non_blocking=True)
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
linear_input = linear_input.cuda(non_blocking=True) if c.model in ["Tacotron"] else None
stop_targets = stop_targets.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
if speaker_embeddings is not None:
speaker_embeddings = speaker_embeddings.cuda(non_blocking=True)
return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length
def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler,
ap, global_step, epoch, scaler, scaler_st):
model.train()
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(
len(data_loader.dataset) / (c.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
end_time = time.time()
c_logger.print_train_start()
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length = format_data(data)
loader_time = time.time() - end_time
global_step += 1
# setup lr
if c.noam_schedule:
scheduler.step()
optimizer.zero_grad()
if optimizer_st:
optimizer_st.zero_grad()
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
# forward pass model
if c.bidirectional_decoder or c.double_decoder_consistency:
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
decoder_backward_output = None
alignments_backward = None
# set the [alignment] lengths wrt reduction factor for guided attention
if mel_lengths.max() % model.decoder.r != 0:
alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
else:
alignment_lengths = mel_lengths // model.decoder.r
# compute loss
loss_dict = criterion(postnet_output, decoder_output, mel_input,
linear_input, stop_tokens, stop_targets,
mel_lengths, decoder_backward_output,
alignments, alignment_lengths, alignments_backward,
text_lengths)
# check nan loss
if torch.isnan(loss_dict['loss']).any():
raise RuntimeError(f'Detected NaN loss at step {global_step}.')
# optimizer step
if c.mixed_precision:
# model optimizer step in mixed precision mode
scaler.scale(loss_dict['loss']).backward()
scaler.unscale_(optimizer)
optimizer, current_lr = adam_weight_decay(optimizer)
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
scaler.step(optimizer)
scaler.update()
# stopnet optimizer step
if c.separate_stopnet:
scaler_st.scale( loss_dict['stopnet_loss']).backward()
scaler.unscale_(optimizer_st)
optimizer_st, _ = adam_weight_decay(optimizer_st)
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
scaler_st.step(optimizer)
scaler_st.update()
else:
grad_norm_st = 0
else:
# main model optimizer step
loss_dict['loss'].backward()
optimizer, current_lr = adam_weight_decay(optimizer)
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
optimizer.step()
# stopnet optimizer step
if c.separate_stopnet:
loss_dict['stopnet_loss'].backward()
optimizer_st, _ = adam_weight_decay(optimizer_st)
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
optimizer_st.step()
else:
grad_norm_st = 0
# compute alignment error (the lower the better )
align_error = 1 - alignment_diagonal_score(alignments)
loss_dict['align_error'] = align_error
step_time = time.time() - start_time
epoch_time += step_time
# aggregate losses from processes
if num_gpus > 1:
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if c.stopnet else loss_dict['stopnet_loss']
# detach loss values
loss_dict_new = dict()
for key, value in loss_dict.items():
if isinstance(value, (int, float)):
loss_dict_new[key] = value
else:
loss_dict_new[key] = value.item()
loss_dict = loss_dict_new
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values['avg_' + key] = value
update_train_values['avg_loader_time'] = loader_time
update_train_values['avg_step_time'] = step_time
keep_avg.update_values(update_train_values)
# print training progress
if global_step % c.print_step == 0:
log_dict = {
"max_spec_length": [max_spec_length, 1], # value, precision
"max_text_length": [max_text_length, 1],
"step_time": [step_time, 4],
"loader_time": [loader_time, 2],
"current_lr": current_lr,
}
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
log_dict, loss_dict, keep_avg.avg_values)
if args.rank == 0:
# Plot Training Iter Stats
# reduce TB load
if global_step % c.tb_plot_step == 0:
iter_stats = {
"lr": current_lr,
"grad_norm": grad_norm,
"grad_norm_st": grad_norm_st,
"step_time": step_time
}
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model, optimizer, global_step, epoch, model.decoder.r, OUT_PATH,
optimizer_st=optimizer_st,
model_loss=loss_dict['postnet_loss'],
scaler=scaler.state_dict() if c.mixed_precision else None)
# Diagnostic visualizations
const_spec = postnet_output[0].data.cpu().numpy()
gt_spec = linear_input[0].data.cpu().numpy() if c.model in [
"Tacotron", "TacotronGST"
] else mel_input[0].data.cpu().numpy()
align_img = alignments[0].data.cpu().numpy()
figures = {
"prediction": plot_spectrogram(const_spec, ap, output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False),
}
if c.bidirectional_decoder or c.double_decoder_consistency:
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False)
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
if c.model in ["Tacotron", "TacotronGST"]:
train_audio = ap.inv_spectrogram(const_spec.T)
else:
train_audio = ap.inv_melspectrogram(const_spec.T)
tb_logger.tb_train_audios(global_step,
{'TrainAudio': train_audio},
c.audio["sample_rate"])
end_time = time.time()
# print epoch stats
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
# Plot Epoch Stats
if args.rank == 0:
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if c.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@torch.no_grad()
def evaluate(data_loader, model, criterion, ap, global_step, epoch):
model.eval()
epoch_time = 0
keep_avg = KeepAverage()
c_logger.print_eval_start()
if data_loader is not None:
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, _, _ = format_data(data)
assert mel_input.shape[1] % model.decoder.r == 0
# forward pass model
if c.bidirectional_decoder or c.double_decoder_consistency:
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
decoder_backward_output = None
alignments_backward = None
# set the alignment lengths wrt reduction factor for guided attention
if mel_lengths.max() % model.decoder.r != 0:
alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
else:
alignment_lengths = mel_lengths // model.decoder.r
# compute loss
loss_dict = criterion(postnet_output, decoder_output, mel_input,
linear_input, stop_tokens, stop_targets,
mel_lengths, decoder_backward_output,
alignments, alignment_lengths, alignments_backward,
text_lengths)
# step time
step_time = time.time() - start_time
epoch_time += step_time
# compute alignment score
align_error = 1 - alignment_diagonal_score(alignments)
loss_dict['align_error'] = align_error
# aggregate losses from processes
if num_gpus > 1:
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
if c.stopnet:
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus)
# detach loss values
loss_dict_new = dict()
for key, value in loss_dict.items():
if isinstance(value, (int, float)):
loss_dict_new[key] = value
else:
loss_dict_new[key] = value.item()
loss_dict = loss_dict_new
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values['avg_' + key] = value
keep_avg.update_values(update_train_values)
if c.print_eval:
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
if args.rank == 0:
# Diagnostic visualizations
idx = np.random.randint(mel_input.shape[0])
const_spec = postnet_output[idx].data.cpu().numpy()
gt_spec = linear_input[idx].data.cpu().numpy() if c.model in [
"Tacotron", "TacotronGST"
] else mel_input[idx].data.cpu().numpy()
align_img = alignments[idx].data.cpu().numpy()
eval_figures = {
"prediction": plot_spectrogram(const_spec, ap, output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False)
}
# Sample audio
if c.model in ["Tacotron", "TacotronGST"]:
eval_audio = ap.inv_spectrogram(const_spec.T)
else:
eval_audio = ap.inv_melspectrogram(const_spec.T)
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
c.audio["sample_rate"])
# Plot Validation Stats
if c.bidirectional_decoder or c.double_decoder_consistency:
align_b_img = alignments_backward[idx].data.cpu().numpy()
eval_figures['alignment2'] = plot_alignment(align_b_img, output_fig=False)
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
tb_logger.tb_eval_figures(global_step, eval_figures)
if args.rank == 0 and epoch > c.test_delay_epochs:
if c.test_sentences_file is None:
test_sentences = [
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"Be a voice, not an echo.",
"I'm sorry Dave. I'm afraid I can't do that.",
"This cake is great. It's so delicious and moist.",
"Prior to November 22, 1963."
]
else:
with open(c.test_sentences_file, "r") as f:
test_sentences = [s.strip() for s in f.readlines()]
# test sentences
test_audios = {}
test_figures = {}
print(" | > Synthesizing test sentences")
speaker_id = 0 if c.use_speaker_embedding else None
speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding'] if c.use_external_speaker_embedding_file and c.use_speaker_embedding else None
style_wav = c.get("gst_style_input")
if style_wav is None and c.use_gst:
# inicialize GST with zero dict.
style_wav = {}
print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!")
for i in range(c.gst['gst_style_tokens']):
style_wav[str(i)] = 0
style_wav = c.get("gst_style_input")
for idx, test_sentence in enumerate(test_sentences):
try:
wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis(
model,
test_sentence,
c,
use_cuda,
ap,
speaker_id=speaker_id,
speaker_embedding=speaker_embedding,
style_wav=style_wav,
truncated=False,
enable_eos_bos_chars=c.enable_eos_bos_chars, #pylint: disable=unused-argument
use_griffin_lim=True,
do_trim_silence=False)
file_path = os.path.join(AUDIO_PATH, str(global_step))
os.makedirs(file_path, exist_ok=True)
file_path = os.path.join(file_path,
"TestSentence_{}.wav".format(idx))
ap.save_wav(wav, file_path)
test_audios['{}-audio'.format(idx)] = wav
test_figures['{}-prediction'.format(idx)] = plot_spectrogram(
postnet_output, ap, output_fig=False)
test_figures['{}-alignment'.format(idx)] = plot_alignment(
alignment, output_fig=False)
except: #pylint: disable=bare-except
print(" !! Error creating Test Sentence -", idx)
traceback.print_exc()
tb_logger.tb_test_audios(global_step, test_audios,
c.audio['sample_rate'])
tb_logger.tb_test_figures(global_step, test_figures)
return keep_avg.avg_values
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping
# Audio processor
ap = AudioProcessor(**c.audio)
if 'characters' in c.keys():
symbols, phonemes = make_symbols(**c.characters)
# DISTRUBUTED
if num_gpus > 1:
init_distributed(args.rank, num_gpus, args.group_id,
c.distributed["backend"], c.distributed["url"])
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
# load data instances
meta_data_train, meta_data_eval = load_meta_data(c.datasets)
# set the portion of the data used for training
if 'train_portion' in c.keys():
meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)]
if 'eval_portion' in c.keys():
meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)]
# parse speakers
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)
# scalers for mixed precision training
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
scaler_st = torch.cuda.amp.GradScaler() if c.mixed_precision and c.separate_stopnet else None
params = set_weight_decay(model, c.wd)
optimizer = RAdam(params, lr=c.lr, weight_decay=0)
if c.stopnet and c.separate_stopnet:
optimizer_st = RAdam(model.decoder.stopnet.parameters(),
lr=c.lr,
weight_decay=0)
else:
optimizer_st = None
# setup criterion
criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4)
if args.restore_path:
checkpoint = torch.load(args.restore_path, map_location='cpu')
try:
print(" > Restoring Model.")
model.load_state_dict(checkpoint['model'])
# optimizer restore
print(" > Restoring Optimizer.")
optimizer.load_state_dict(checkpoint['optimizer'])
if "scaler" in checkpoint and c.mixed_precision:
print(" > Restoring AMP Scaler...")
scaler.load_state_dict(checkpoint["scaler"])
if c.reinit_layers:
raise RuntimeError
except (KeyError, RuntimeError):
print(" > Partial model initialization.")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint['model'], c)
# torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt'))
# print("State Dict saved for debug in: ", os.path.join(OUT_PATH, 'state_dict.pt'))
model.load_state_dict(model_dict)
del model_dict
for group in optimizer.param_groups:
group['lr'] = c.lr
print(" > Model restored from step %d" % checkpoint['step'],
flush=True)
args.restore_step = checkpoint['step']
else:
args.restore_step = 0
if use_cuda:
model.cuda()
criterion.cuda()
# DISTRUBUTED
if num_gpus > 1:
model = apply_gradient_allreduce(model)
if c.noam_schedule:
scheduler = NoamLR(optimizer,
warmup_steps=c.warmup_steps,
last_epoch=args.restore_step - 1)
else:
scheduler = None
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
if 'best_loss' not in locals():
best_loss = float('inf')
# define data loaders
train_loader = setup_loader(ap,
model.decoder.r,
is_val=False,
verbose=True)
eval_loader = setup_loader(ap, model.decoder.r, is_val=True)
global_step = args.restore_step
for epoch in range(0, c.epochs):
c_logger.print_epoch_start(epoch, c.epochs)
# set gradual training
if c.gradual_training is not None:
r, c.batch_size = gradual_training_scheduler(global_step, c)
c.r = r
model.decoder.set_r(r)
if c.bidirectional_decoder:
model.decoder_backward.set_r(r)
train_loader.dataset.outputs_per_step = r
eval_loader.dataset.outputs_per_step = r
train_loader = setup_loader(ap,
model.decoder.r,
is_val=False,
dataset=train_loader.dataset)
eval_loader = setup_loader(ap,
model.decoder.r,
is_val=True,
dataset=eval_loader.dataset)
print("\n > Number of output frames:", model.decoder.r)
# train one epoch
train_avg_loss_dict, global_step = train(train_loader, model,
criterion, optimizer,
optimizer_st, scheduler, ap,
global_step, epoch, scaler,
scaler_st)
# eval one epoch
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = train_avg_loss_dict['avg_postnet_loss']
if c.run_eval:
target_loss = eval_avg_loss_dict['avg_postnet_loss']
best_loss = save_best_model(
target_loss,
best_loss,
model,
optimizer,
global_step,
epoch,
c.r,
OUT_PATH,
scaler=scaler.state_dict() if c.mixed_precision else None)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--continue_path',
type=str,
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default='',
required='--config_path' not in sys.argv)
parser.add_argument(
'--restore_path',
type=str,
help='Model file to be restored. Use to finetune a model.',
default='')
parser.add_argument(
'--config_path',
type=str,
help='Path to config file for training.',
required='--continue_path' not in sys.argv
)
parser.add_argument('--debug',
type=bool,
default=False,
help='Do not verify commit integrity to run training.')
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
if args.continue_path != '':
print(f" > Training continues for {args.continue_path}")
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(args.continue_path + "/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
# setup output paths and read configs
c = load_config(args.config_path)
check_config_tts(c)
_ = os.path.dirname(os.path.realpath(__file__))
if c.mixed_precision:
print(" > Mixed precision mode is ON")
OUT_PATH = args.continue_path
if args.continue_path == '':
OUT_PATH = create_experiment_folder(c.output_path, c.run_name, args.debug)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path,
OUT_PATH, new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='TTS')
# write model desc to tensorboard
tb_logger.tb_add_text('model-description', c['run_description'], 0)
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)
|