File size: 25,835 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import argparse
import glob
import os
import sys
import time
import traceback
from random import randrange

import torch
# DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import GlowTTSLoss
from TTS.tts.utils.generic_utils import check_config_tts, setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
                                     create_experiment_folder, get_git_branch,
                                     remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import NoamLR, setup_torch_training_env

use_cuda, num_gpus = setup_torch_training_env(True, False)

def setup_loader(ap, r, is_val=False, verbose=False):
    if is_val and not c.run_eval:
        loader = None
    else:
        dataset = MyDataset(
            r,
            c.text_cleaner,
            compute_linear_spec=False,
            meta_data=meta_data_eval if is_val else meta_data_train,
            ap=ap,
            tp=c.characters if 'characters' in c.keys() else None,
            add_blank=c['add_blank'] if 'add_blank' in c.keys() else False,
            batch_group_size=0 if is_val else c.batch_group_size *
            c.batch_size,
            min_seq_len=c.min_seq_len,
            max_seq_len=c.max_seq_len,
            phoneme_cache_path=c.phoneme_cache_path,
            use_phonemes=c.use_phonemes,
            phoneme_language=c.phoneme_language,
            enable_eos_bos=c.enable_eos_bos_chars,
            use_noise_augment=c['use_noise_augment'] and not is_val,
            verbose=verbose,
            speaker_mapping=speaker_mapping if c.use_speaker_embedding and c.use_external_speaker_embedding_file else None)

        if c.use_phonemes and c.compute_input_seq_cache:
            # precompute phonemes to have a better estimate of sequence lengths.
            dataset.compute_input_seq(c.num_loader_workers)
        dataset.sort_items()

        sampler = DistributedSampler(dataset) if num_gpus > 1 else None
        loader = DataLoader(
            dataset,
            batch_size=c.eval_batch_size if is_val else c.batch_size,
            shuffle=False,
            collate_fn=dataset.collate_fn,
            drop_last=False,
            sampler=sampler,
            num_workers=c.num_val_loader_workers
            if is_val else c.num_loader_workers,
            pin_memory=False)
    return loader


def format_data(data):
    # setup input data
    text_input = data[0]
    text_lengths = data[1]
    speaker_names = data[2]
    mel_input = data[4].permute(0, 2, 1)  # B x D x T
    mel_lengths = data[5]
    item_idx = data[7]
    attn_mask = data[9]
    avg_text_length = torch.mean(text_lengths.float())
    avg_spec_length = torch.mean(mel_lengths.float())

    if c.use_speaker_embedding:
        if c.use_external_speaker_embedding_file:
            # return precomputed embedding vector
            speaker_c = data[8]
        else:
            # return speaker_id to be used by an embedding layer
            speaker_c = [
                speaker_mapping[speaker_name] for speaker_name in speaker_names
            ]
            speaker_c = torch.LongTensor(speaker_c)
    else:
        speaker_c = None

    # dispatch data to GPU
    if use_cuda:
        text_input = text_input.cuda(non_blocking=True)
        text_lengths = text_lengths.cuda(non_blocking=True)
        mel_input = mel_input.cuda(non_blocking=True)
        mel_lengths = mel_lengths.cuda(non_blocking=True)
        if speaker_c is not None:
            speaker_c = speaker_c.cuda(non_blocking=True)
        if attn_mask is not None:
            attn_mask = attn_mask.cuda(non_blocking=True)
    return text_input, text_lengths, mel_input, mel_lengths, speaker_c,\
         avg_text_length, avg_spec_length, attn_mask, item_idx


def data_depended_init(data_loader, model, ap):
    """Data depended initialization for activation normalization."""
    if hasattr(model, 'module'):
        for f in model.module.decoder.flows:
            if getattr(f, "set_ddi", False):
                f.set_ddi(True)
    else:
        for f in model.decoder.flows:
            if getattr(f, "set_ddi", False):
                f.set_ddi(True)

    model.train()
    print(" > Data depended initialization ... ")
    num_iter = 0
    with torch.no_grad():
        for _, data in enumerate(data_loader):

            # format data
            text_input, text_lengths, mel_input, mel_lengths, spekaer_embed,\
                _, _, attn_mask, item_idx = format_data(data)

            # forward pass model
            _ = model.forward(
                text_input, text_lengths, mel_input, mel_lengths, attn_mask, g=spekaer_embed)
            if num_iter == c.data_dep_init_iter:
                break
            num_iter += 1

    if hasattr(model, 'module'):
        for f in model.module.decoder.flows:
            if getattr(f, "set_ddi", False):
                f.set_ddi(False)
    else:
        for f in model.decoder.flows:
            if getattr(f, "set_ddi", False):
                f.set_ddi(False)
    return model


def train(data_loader, model, criterion, optimizer, scheduler,
          ap, global_step, epoch):

    model.train()
    epoch_time = 0
    keep_avg = KeepAverage()
    if use_cuda:
        batch_n_iter = int(
            len(data_loader.dataset) / (c.batch_size * num_gpus))
    else:
        batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
    end_time = time.time()
    c_logger.print_train_start()
    scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
    for num_iter, data in enumerate(data_loader):
        start_time = time.time()

        # format data
        text_input, text_lengths, mel_input, mel_lengths, speaker_c,\
            avg_text_length, avg_spec_length, attn_mask, item_idx = format_data(data)

        loader_time = time.time() - end_time

        global_step += 1
        optimizer.zero_grad()

        # forward pass model
        with torch.cuda.amp.autocast(enabled=c.mixed_precision):
            z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward(
                text_input, text_lengths, mel_input, mel_lengths, attn_mask, g=speaker_c)

            # compute loss
            loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths,
                                o_dur_log, o_total_dur, text_lengths)

        # backward pass with loss scaling
        if c.mixed_precision:
            scaler.scale(loss_dict['loss']).backward()
            scaler.unscale_(optimizer)
            grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           c.grad_clip)
            scaler.step(optimizer)
            scaler.update()
        else:
            loss_dict['loss'].backward()
            grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           c.grad_clip)
            optimizer.step()

        # setup lr
        if c.noam_schedule:
            scheduler.step()

        # current_lr
        current_lr = optimizer.param_groups[0]['lr']

        # compute alignment error (the lower the better )
        align_error = 1 - alignment_diagonal_score(alignments, binary=True)
        loss_dict['align_error'] = align_error

        step_time = time.time() - start_time
        epoch_time += step_time

        # aggregate losses from processes
        if num_gpus > 1:
            loss_dict['log_mle'] = reduce_tensor(loss_dict['log_mle'].data, num_gpus)
            loss_dict['loss_dur'] = reduce_tensor(loss_dict['loss_dur'].data, num_gpus)
            loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)

        # detach loss values
        loss_dict_new = dict()
        for key, value in loss_dict.items():
            if isinstance(value, (int, float)):
                loss_dict_new[key] = value
            else:
                loss_dict_new[key] = value.item()
        loss_dict = loss_dict_new

        # update avg stats
        update_train_values = dict()
        for key, value in loss_dict.items():
            update_train_values['avg_' + key] = value
        update_train_values['avg_loader_time'] = loader_time
        update_train_values['avg_step_time'] = step_time
        keep_avg.update_values(update_train_values)

        # print training progress
        if global_step % c.print_step == 0:
            log_dict = {
                "avg_spec_length": [avg_spec_length, 1],  # value, precision
                "avg_text_length": [avg_text_length, 1],
                "step_time": [step_time, 4],
                "loader_time": [loader_time, 2],
                "current_lr": current_lr,
            }
            c_logger.print_train_step(batch_n_iter, num_iter, global_step,
                                      log_dict, loss_dict, keep_avg.avg_values)

        if args.rank == 0:
            # Plot Training Iter Stats
            # reduce TB load
            if global_step % c.tb_plot_step == 0:
                iter_stats = {
                    "lr": current_lr,
                    "grad_norm": grad_norm,
                    "step_time": step_time
                }
                iter_stats.update(loss_dict)
                tb_logger.tb_train_iter_stats(global_step, iter_stats)

            if global_step % c.save_step == 0:
                if c.checkpoint:
                    # save model
                    save_checkpoint(model, optimizer, global_step, epoch, 1, OUT_PATH,
                                    model_loss=loss_dict['loss'])

                # wait all kernels to be completed
                torch.cuda.synchronize()

                # Diagnostic visualizations
                # direct pass on model for spec predictions
                target_speaker = None if speaker_c is None else speaker_c[:1]

                if hasattr(model, 'module'):
                    spec_pred, *_ = model.module.inference(text_input[:1], text_lengths[:1], g=target_speaker)
                else:
                    spec_pred, *_ = model.inference(text_input[:1], text_lengths[:1], g=target_speaker)

                spec_pred = spec_pred.permute(0, 2, 1)
                gt_spec = mel_input.permute(0, 2, 1)
                const_spec = spec_pred[0].data.cpu().numpy()
                gt_spec = gt_spec[0].data.cpu().numpy()
                align_img = alignments[0].data.cpu().numpy()

                figures = {
                    "prediction": plot_spectrogram(const_spec, ap),
                    "ground_truth": plot_spectrogram(gt_spec, ap),
                    "alignment": plot_alignment(align_img),
                }

                tb_logger.tb_train_figures(global_step, figures)

                # Sample audio
                train_audio = ap.inv_melspectrogram(const_spec.T)
                tb_logger.tb_train_audios(global_step,
                                          {'TrainAudio': train_audio},
                                          c.audio["sample_rate"])
        end_time = time.time()

    # print epoch stats
    c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)

    # Plot Epoch Stats
    if args.rank == 0:
        epoch_stats = {"epoch_time": epoch_time}
        epoch_stats.update(keep_avg.avg_values)
        tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
        if c.tb_model_param_stats:
            tb_logger.tb_model_weights(model, global_step)
    return keep_avg.avg_values, global_step


@torch.no_grad()
def evaluate(data_loader, model, criterion, ap, global_step, epoch):
    model.eval()
    epoch_time = 0
    keep_avg = KeepAverage()
    c_logger.print_eval_start()
    if data_loader is not None:
        for num_iter, data in enumerate(data_loader):
            start_time = time.time()

            # format data
            text_input, text_lengths, mel_input, mel_lengths, speaker_c,\
                _, _, attn_mask, item_idx = format_data(data)

            # forward pass model
            z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward(
                text_input, text_lengths, mel_input, mel_lengths, attn_mask, g=speaker_c)

            # compute loss
            loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths,
                                  o_dur_log, o_total_dur, text_lengths)

            # step time
            step_time = time.time() - start_time
            epoch_time += step_time

            # compute alignment score
            align_error = 1 - alignment_diagonal_score(alignments)
            loss_dict['align_error'] = align_error

            # aggregate losses from processes
            if num_gpus > 1:
                loss_dict['log_mle'] = reduce_tensor(loss_dict['log_mle'].data, num_gpus)
                loss_dict['loss_dur'] = reduce_tensor(loss_dict['loss_dur'].data, num_gpus)
                loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)

            # detach loss values
            loss_dict_new = dict()
            for key, value in loss_dict.items():
                if isinstance(value, (int, float)):
                    loss_dict_new[key] = value
                else:
                    loss_dict_new[key] = value.item()
            loss_dict = loss_dict_new

            # update avg stats
            update_train_values = dict()
            for key, value in loss_dict.items():
                update_train_values['avg_' + key] = value
            keep_avg.update_values(update_train_values)

            if c.print_eval:
                c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)

        if args.rank == 0:
            # Diagnostic visualizations
            # direct pass on model for spec predictions
            target_speaker = None if speaker_c is None else speaker_c[:1]
            if hasattr(model, 'module'):
                spec_pred, *_ = model.module.inference(text_input[:1], text_lengths[:1], g=target_speaker)
            else:
                spec_pred, *_ = model.inference(text_input[:1], text_lengths[:1], g=target_speaker)
            spec_pred = spec_pred.permute(0, 2, 1)
            gt_spec = mel_input.permute(0, 2, 1)

            const_spec = spec_pred[0].data.cpu().numpy()
            gt_spec = gt_spec[0].data.cpu().numpy()
            align_img = alignments[0].data.cpu().numpy()

            eval_figures = {
                "prediction": plot_spectrogram(const_spec, ap),
                "ground_truth": plot_spectrogram(gt_spec, ap),
                "alignment": plot_alignment(align_img)
            }

            # Sample audio
            eval_audio = ap.inv_melspectrogram(const_spec.T)
            tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
                                     c.audio["sample_rate"])

            # Plot Validation Stats
            tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
            tb_logger.tb_eval_figures(global_step, eval_figures)

    if args.rank == 0 and epoch >= c.test_delay_epochs:
        if c.test_sentences_file is None:
            test_sentences = [
                "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
                "Be a voice, not an echo.",
                "I'm sorry Dave. I'm afraid I can't do that.",
                "This cake is great. It's so delicious and moist.",
                "Prior to November 22, 1963."
            ]
        else:
            with open(c.test_sentences_file, "r") as f:
                test_sentences = [s.strip() for s in f.readlines()]

        # test sentences
        test_audios = {}
        test_figures = {}
        print(" | > Synthesizing test sentences")
        if c.use_speaker_embedding:
            if c.use_external_speaker_embedding_file:
                speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding']
                speaker_id = None
            else:
                speaker_id = 0
                speaker_embedding = None
        else:
            speaker_id = None
            speaker_embedding = None

        style_wav = c.get("style_wav_for_test")
        for idx, test_sentence in enumerate(test_sentences):
            try:
                wav, alignment, _, postnet_output, _, _ = synthesis(
                    model,
                    test_sentence,
                    c,
                    use_cuda,
                    ap,
                    speaker_id=speaker_id,
                    speaker_embedding=speaker_embedding,
                    style_wav=style_wav,
                    truncated=False,
                    enable_eos_bos_chars=c.enable_eos_bos_chars, #pylint: disable=unused-argument
                    use_griffin_lim=True,
                    do_trim_silence=False)

                file_path = os.path.join(AUDIO_PATH, str(global_step))
                os.makedirs(file_path, exist_ok=True)
                file_path = os.path.join(file_path,
                                         "TestSentence_{}.wav".format(idx))
                ap.save_wav(wav, file_path)
                test_audios['{}-audio'.format(idx)] = wav
                test_figures['{}-prediction'.format(idx)] = plot_spectrogram(
                    postnet_output, ap)
                test_figures['{}-alignment'.format(idx)] = plot_alignment(
                    alignment)
            except: #pylint: disable=bare-except
                print(" !! Error creating Test Sentence -", idx)
                traceback.print_exc()
        tb_logger.tb_test_audios(global_step, test_audios,
                                 c.audio['sample_rate'])
        tb_logger.tb_test_figures(global_step, test_figures)
    return keep_avg.avg_values


# FIXME: move args definition/parsing inside of main?
def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping
    # Audio processor
    ap = AudioProcessor(**c.audio)
    if 'characters' in c.keys():
        symbols, phonemes = make_symbols(**c.characters)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    # load data instances
    meta_data_train, meta_data_eval = load_meta_data(c.datasets)

    # set the portion of the data used for training
    if 'train_portion' in c.keys():
        meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)]
    if 'eval_portion' in c.keys():
        meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)]

    # parse speakers
    num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)

    # setup model
    model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim=speaker_embedding_dim)
    optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
    criterion = GlowTTSLoss()

    if args.restore_path:
        checkpoint = torch.load(args.restore_path, map_location='cpu')
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except: #pylint: disable=bare-except
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint['model'], c)
            model.load_state_dict(model_dict)
            del model_dict

        for group in optimizer.param_groups:
            group['initial_lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model.cuda()
        criterion.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = DDP_th(model, device_ids=[args.rank])

    if c.noam_schedule:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    # define dataloaders
    train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
    eval_loader = setup_loader(ap, 1, is_val=True, verbose=True)

    global_step = args.restore_step
    model = data_depended_init(train_loader, model, ap)
    for epoch in range(0, c.epochs):
        c_logger.print_epoch_start(epoch, c.epochs)
        train_avg_loss_dict, global_step = train(train_loader, model, criterion, optimizer,
                                                 scheduler, ap, global_step,
                                                 epoch)
        eval_avg_loss_dict = evaluate(eval_loader , model, criterion, ap, global_step, epoch)
        c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
        target_loss = train_avg_loss_dict['avg_loss']
        if c.run_eval:
            target_loss = eval_avg_loss_dict['avg_loss']
        best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r,
                                    OUT_PATH)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--continue_path',
        type=str,
        help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
        default='',
        required='--config_path' not in sys.argv)
    parser.add_argument(
        '--restore_path',
        type=str,
        help='Model file to be restored. Use to finetune a model.',
        default='')
    parser.add_argument(
        '--config_path',
        type=str,
        help='Path to config file for training.',
        required='--continue_path' not in sys.argv
    )
    parser.add_argument('--debug',
                        type=bool,
                        default=False,
                        help='Do not verify commit integrity to run training.')

    # DISTRUBUTED
    parser.add_argument(
        '--rank',
        type=int,
        default=0,
        help='DISTRIBUTED: process rank for distributed training.')
    parser.add_argument('--group_id',
                        type=str,
                        default="",
                        help='DISTRIBUTED: process group id.')
    args = parser.parse_args()

    if args.continue_path != '':
        args.output_path = args.continue_path
        args.config_path = os.path.join(args.continue_path, 'config.json')
        list_of_files = glob.glob(args.continue_path + "/*.pth.tar") # * means all if need specific format then *.csv
        latest_model_file = max(list_of_files, key=os.path.getctime)
        args.restore_path = latest_model_file
        print(f" > Training continues for {args.restore_path}")

    # setup output paths and read configs
    c = load_config(args.config_path)
    # check_config(c)
    check_config_tts(c)
    _ = os.path.dirname(os.path.realpath(__file__))

    if c.mixed_precision:
        print("   > Mixed precision enabled.")

    OUT_PATH = args.continue_path
    if args.continue_path == '':
        OUT_PATH = create_experiment_folder(c.output_path, c.run_name, args.debug)

    AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')

    c_logger = ConsoleLogger()

    if args.rank == 0:
        os.makedirs(AUDIO_PATH, exist_ok=True)
        new_fields = {}
        if args.restore_path:
            new_fields["restore_path"] = args.restore_path
        new_fields["github_branch"] = get_git_branch()
        copy_model_files(c,  args.config_path,
                         OUT_PATH, new_fields)
        os.chmod(AUDIO_PATH, 0o775)
        os.chmod(OUT_PATH, 0o775)

        LOG_DIR = OUT_PATH
        tb_logger = TensorboardLogger(LOG_DIR, model_name='TTS')

        # write model desc to tensorboard
        tb_logger.tb_add_text('model-description', c['run_description'], 0)

    try:
        main(args)
    except KeyboardInterrupt:
        remove_experiment_folder(OUT_PATH)
        try:
            sys.exit(0)
        except SystemExit:
            os._exit(0)  # pylint: disable=protected-access
    except Exception:  # pylint: disable=broad-except
        remove_experiment_folder(OUT_PATH)
        traceback.print_exc()
        sys.exit(1)