distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9802
- 0 Precision: 0.9692
- 0 Recall: 0.9435
- 0 F1-score: 0.9562
- 1 Precision: 0.7997
- 1 Recall: 0.8792
- 1 F1-score: 0.8376
- 2 Precision: 0.6988
- 2 Recall: 0.8028
- 2 F1-score: 0.7472
- 3 Precision: 0.7917
- 3 Recall: 0.8548
- 3 F1-score: 0.8220
- Accuracy: 0.9252
- Macro avg Precision: 0.8148
- Macro avg Recall: 0.8701
- Macro avg F1-score: 0.8407
- Weighted avg Precision: 0.9295
- Weighted avg Recall: 0.9252
- Weighted avg F1-score: 0.9268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 1 Precision | 1 Recall | 1 F1-score | 2 Precision | 2 Recall | 2 F1-score | 3 Precision | 3 Recall | 3 F1-score | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 67 | 0.4250 | 0.9903 | 0.7848 | 0.8756 | 0.5423 | 0.9449 | 0.6891 | 0.3268 | 0.8720 | 0.4755 | 0.5597 | 0.7669 | 0.6471 | 0.8010 | 0.6048 | 0.8421 | 0.6718 | 0.8904 | 0.8010 | 0.8249 |
No log | 2.0 | 134 | 0.3689 | 0.9870 | 0.8424 | 0.9089 | 0.6009 | 0.9361 | 0.7319 | 0.48 | 0.8304 | 0.6084 | 0.6025 | 0.8957 | 0.7204 | 0.8539 | 0.6676 | 0.8761 | 0.7424 | 0.9027 | 0.8539 | 0.8664 |
No log | 3.0 | 201 | 0.3369 | 0.9925 | 0.8111 | 0.8926 | 0.5395 | 0.9591 | 0.6905 | 0.4491 | 0.8997 | 0.5991 | 0.6213 | 0.9059 | 0.7371 | 0.8348 | 0.6506 | 0.8939 | 0.7298 | 0.9018 | 0.8348 | 0.8507 |
No log | 4.0 | 268 | 0.3532 | 0.9863 | 0.8815 | 0.9310 | 0.6240 | 0.9343 | 0.7482 | 0.5593 | 0.8651 | 0.6793 | 0.7202 | 0.8896 | 0.7960 | 0.8859 | 0.7224 | 0.8926 | 0.7886 | 0.9164 | 0.8859 | 0.8941 |
No log | 5.0 | 335 | 0.4184 | 0.9867 | 0.8817 | 0.9313 | 0.6243 | 0.9325 | 0.7479 | 0.6076 | 0.8304 | 0.7018 | 0.6813 | 0.9182 | 0.7822 | 0.8865 | 0.7250 | 0.8907 | 0.7908 | 0.9160 | 0.8865 | 0.8942 |
No log | 6.0 | 402 | 0.4253 | 0.9800 | 0.9019 | 0.9393 | 0.6831 | 0.9112 | 0.7808 | 0.6247 | 0.8581 | 0.7230 | 0.7138 | 0.8875 | 0.7912 | 0.8997 | 0.7504 | 0.8897 | 0.8086 | 0.9189 | 0.8997 | 0.9051 |
No log | 7.0 | 469 | 0.4059 | 0.9851 | 0.8892 | 0.9347 | 0.6340 | 0.9414 | 0.7577 | 0.5906 | 0.8685 | 0.7031 | 0.7428 | 0.8916 | 0.8104 | 0.8930 | 0.7381 | 0.8977 | 0.8015 | 0.9194 | 0.8930 | 0.9000 |
0.264 | 8.0 | 536 | 0.4724 | 0.9802 | 0.9105 | 0.9441 | 0.7097 | 0.8988 | 0.7931 | 0.6256 | 0.8616 | 0.7249 | 0.735 | 0.9018 | 0.8099 | 0.9067 | 0.7626 | 0.8932 | 0.8180 | 0.9230 | 0.9067 | 0.9114 |
0.264 | 9.0 | 603 | 0.4683 | 0.9787 | 0.9101 | 0.9432 | 0.6766 | 0.9254 | 0.7817 | 0.6231 | 0.8581 | 0.7220 | 0.7807 | 0.8589 | 0.8179 | 0.9053 | 0.7648 | 0.8881 | 0.8162 | 0.9223 | 0.9053 | 0.9102 |
0.264 | 10.0 | 670 | 0.5353 | 0.9728 | 0.9328 | 0.9524 | 0.7942 | 0.8703 | 0.8305 | 0.6515 | 0.8408 | 0.7341 | 0.7558 | 0.8732 | 0.8102 | 0.9189 | 0.7935 | 0.8793 | 0.8318 | 0.9270 | 0.9189 | 0.9216 |
0.264 | 11.0 | 737 | 0.5061 | 0.9786 | 0.9130 | 0.9447 | 0.7347 | 0.9147 | 0.8149 | 0.6010 | 0.8651 | 0.7092 | 0.7469 | 0.8753 | 0.8060 | 0.9082 | 0.7653 | 0.8920 | 0.8187 | 0.9237 | 0.9082 | 0.9128 |
0.264 | 12.0 | 804 | 0.6254 | 0.9703 | 0.9355 | 0.9526 | 0.7444 | 0.8792 | 0.8062 | 0.6945 | 0.8339 | 0.7579 | 0.7926 | 0.8364 | 0.8139 | 0.9188 | 0.8005 | 0.8713 | 0.8326 | 0.9255 | 0.9188 | 0.9211 |
0.264 | 13.0 | 871 | 0.6908 | 0.9704 | 0.9376 | 0.9537 | 0.7776 | 0.8508 | 0.8126 | 0.7096 | 0.8201 | 0.7608 | 0.7566 | 0.8773 | 0.8125 | 0.9204 | 0.8035 | 0.8714 | 0.8349 | 0.9263 | 0.9204 | 0.9225 |
0.264 | 14.0 | 938 | 0.6405 | 0.9716 | 0.9263 | 0.9484 | 0.7227 | 0.8934 | 0.7990 | 0.6842 | 0.8097 | 0.7417 | 0.7527 | 0.8405 | 0.7942 | 0.9119 | 0.7828 | 0.8675 | 0.8208 | 0.9212 | 0.9119 | 0.9149 |
0.0528 | 15.0 | 1005 | 0.7143 | 0.9718 | 0.9380 | 0.9546 | 0.7668 | 0.8703 | 0.8153 | 0.7091 | 0.8097 | 0.7561 | 0.7740 | 0.8753 | 0.8215 | 0.9218 | 0.8054 | 0.8733 | 0.8369 | 0.9278 | 0.9218 | 0.9239 |
0.0528 | 16.0 | 1072 | 0.7162 | 0.9694 | 0.9374 | 0.9531 | 0.7634 | 0.8828 | 0.8188 | 0.7096 | 0.8201 | 0.7608 | 0.7765 | 0.8384 | 0.8063 | 0.9201 | 0.8047 | 0.8697 | 0.8348 | 0.9258 | 0.9201 | 0.9221 |
0.0528 | 17.0 | 1139 | 0.7823 | 0.9661 | 0.9412 | 0.9535 | 0.7960 | 0.8455 | 0.8200 | 0.7212 | 0.8235 | 0.7690 | 0.7477 | 0.8364 | 0.7896 | 0.9200 | 0.8078 | 0.8617 | 0.8330 | 0.9244 | 0.9200 | 0.9216 |
0.0528 | 18.0 | 1206 | 0.7009 | 0.9729 | 0.9299 | 0.9509 | 0.7326 | 0.8810 | 0.8 | 0.6891 | 0.8131 | 0.7460 | 0.7685 | 0.8691 | 0.8157 | 0.9160 | 0.7908 | 0.8733 | 0.8282 | 0.9244 | 0.9160 | 0.9188 |
0.0528 | 19.0 | 1273 | 0.7972 | 0.9689 | 0.9384 | 0.9534 | 0.8037 | 0.8579 | 0.8299 | 0.6859 | 0.8235 | 0.7484 | 0.7487 | 0.8528 | 0.7973 | 0.9200 | 0.8018 | 0.8681 | 0.8323 | 0.9257 | 0.9200 | 0.9221 |
0.0528 | 20.0 | 1340 | 0.8604 | 0.9650 | 0.9482 | 0.9565 | 0.8072 | 0.8401 | 0.8233 | 0.7183 | 0.8028 | 0.7582 | 0.7859 | 0.8405 | 0.8123 | 0.9244 | 0.8191 | 0.8579 | 0.8376 | 0.9272 | 0.9244 | 0.9255 |
0.0528 | 21.0 | 1407 | 0.7864 | 0.9713 | 0.9372 | 0.9540 | 0.7910 | 0.8739 | 0.8304 | 0.6791 | 0.8201 | 0.7429 | 0.7595 | 0.8589 | 0.8061 | 0.9208 | 0.8002 | 0.8725 | 0.8334 | 0.9271 | 0.9208 | 0.9230 |
0.0528 | 22.0 | 1474 | 0.8004 | 0.9714 | 0.9384 | 0.9546 | 0.7615 | 0.8845 | 0.8184 | 0.7130 | 0.8166 | 0.7613 | 0.7767 | 0.8466 | 0.8102 | 0.9215 | 0.8056 | 0.8715 | 0.8361 | 0.9274 | 0.9215 | 0.9236 |
0.0192 | 23.0 | 1541 | 0.8033 | 0.9722 | 0.9386 | 0.9551 | 0.7793 | 0.8845 | 0.8286 | 0.6985 | 0.8097 | 0.75 | 0.7715 | 0.8630 | 0.8147 | 0.9226 | 0.8054 | 0.8739 | 0.8371 | 0.9285 | 0.9226 | 0.9247 |
0.0192 | 24.0 | 1608 | 0.8725 | 0.9661 | 0.9480 | 0.9570 | 0.8325 | 0.8472 | 0.8398 | 0.6939 | 0.8235 | 0.7532 | 0.7859 | 0.8405 | 0.8123 | 0.9258 | 0.8196 | 0.8648 | 0.8405 | 0.9292 | 0.9258 | 0.9271 |
0.0192 | 25.0 | 1675 | 0.8488 | 0.9708 | 0.9393 | 0.9548 | 0.8020 | 0.8632 | 0.8315 | 0.6879 | 0.8235 | 0.7496 | 0.7599 | 0.8671 | 0.8099 | 0.9223 | 0.8051 | 0.8733 | 0.8365 | 0.9281 | 0.9223 | 0.9243 |
0.0192 | 26.0 | 1742 | 0.8193 | 0.9730 | 0.9339 | 0.9531 | 0.7477 | 0.8845 | 0.8104 | 0.7122 | 0.8304 | 0.7668 | 0.7642 | 0.8548 | 0.8069 | 0.9192 | 0.7993 | 0.8759 | 0.8343 | 0.9265 | 0.9192 | 0.9217 |
0.0192 | 27.0 | 1809 | 0.8800 | 0.9687 | 0.9451 | 0.9567 | 0.8033 | 0.8561 | 0.8289 | 0.7156 | 0.8270 | 0.7673 | 0.7772 | 0.8487 | 0.8113 | 0.9250 | 0.8162 | 0.8692 | 0.8411 | 0.9290 | 0.9250 | 0.9265 |
0.0192 | 28.0 | 1876 | 0.8399 | 0.9719 | 0.9366 | 0.9539 | 0.7545 | 0.8845 | 0.8144 | 0.7178 | 0.8097 | 0.7610 | 0.7721 | 0.8589 | 0.8132 | 0.9208 | 0.8041 | 0.8724 | 0.8356 | 0.9271 | 0.9208 | 0.9229 |
0.0192 | 29.0 | 1943 | 0.9358 | 0.9682 | 0.9466 | 0.9573 | 0.8084 | 0.8544 | 0.8307 | 0.7191 | 0.8062 | 0.7602 | 0.7788 | 0.8569 | 0.8160 | 0.9258 | 0.8186 | 0.8660 | 0.8410 | 0.9293 | 0.9258 | 0.9272 |
0.0081 | 30.0 | 2010 | 0.8878 | 0.9711 | 0.9407 | 0.9556 | 0.8123 | 0.8455 | 0.8285 | 0.6965 | 0.8339 | 0.7591 | 0.75 | 0.8773 | 0.8087 | 0.9230 | 0.8075 | 0.8743 | 0.8380 | 0.9288 | 0.9230 | 0.9251 |
0.0081 | 31.0 | 2077 | 0.8791 | 0.9698 | 0.9437 | 0.9566 | 0.8046 | 0.8632 | 0.8329 | 0.6968 | 0.8270 | 0.7563 | 0.7809 | 0.8528 | 0.8152 | 0.9249 | 0.8130 | 0.8717 | 0.8403 | 0.9295 | 0.9249 | 0.9266 |
0.0081 | 32.0 | 2144 | 0.8428 | 0.9743 | 0.9376 | 0.9556 | 0.7850 | 0.8757 | 0.8279 | 0.6928 | 0.8270 | 0.7539 | 0.7695 | 0.8875 | 0.8243 | 0.9237 | 0.8054 | 0.8819 | 0.8404 | 0.9303 | 0.9237 | 0.9259 |
0.0081 | 33.0 | 2211 | 0.8576 | 0.9716 | 0.9389 | 0.9550 | 0.7852 | 0.8828 | 0.8311 | 0.6844 | 0.8478 | 0.7573 | 0.7924 | 0.8507 | 0.8205 | 0.9235 | 0.8084 | 0.8800 | 0.8410 | 0.9295 | 0.9235 | 0.9256 |
0.0081 | 34.0 | 2278 | 0.9266 | 0.9699 | 0.9468 | 0.9582 | 0.8156 | 0.8721 | 0.8429 | 0.7118 | 0.8374 | 0.7695 | 0.7935 | 0.8487 | 0.8202 | 0.9282 | 0.8227 | 0.8762 | 0.8477 | 0.9321 | 0.9282 | 0.9297 |
0.0081 | 35.0 | 2345 | 0.9253 | 0.9695 | 0.9407 | 0.9549 | 0.7776 | 0.8757 | 0.8237 | 0.7048 | 0.8097 | 0.7536 | 0.7906 | 0.8569 | 0.8224 | 0.9230 | 0.8106 | 0.8707 | 0.8387 | 0.9280 | 0.9230 | 0.9248 |
0.0081 | 36.0 | 2412 | 0.9402 | 0.9697 | 0.9462 | 0.9578 | 0.8087 | 0.8632 | 0.8351 | 0.6886 | 0.8339 | 0.7543 | 0.8043 | 0.8487 | 0.8259 | 0.9269 | 0.8178 | 0.8730 | 0.8433 | 0.9311 | 0.9269 | 0.9284 |
0.0081 | 37.0 | 2479 | 0.9513 | 0.9692 | 0.9430 | 0.9559 | 0.7977 | 0.8686 | 0.8316 | 0.6962 | 0.8166 | 0.7516 | 0.7868 | 0.8528 | 0.8184 | 0.9243 | 0.8125 | 0.8702 | 0.8394 | 0.9288 | 0.9243 | 0.9259 |
0.0044 | 38.0 | 2546 | 0.9609 | 0.9699 | 0.9416 | 0.9556 | 0.7958 | 0.8721 | 0.8322 | 0.7134 | 0.8097 | 0.7585 | 0.7737 | 0.8671 | 0.8177 | 0.9243 | 0.8132 | 0.8726 | 0.8410 | 0.9290 | 0.9243 | 0.9260 |
0.0044 | 39.0 | 2613 | 0.9623 | 0.9687 | 0.9443 | 0.9563 | 0.7967 | 0.8703 | 0.8319 | 0.7169 | 0.8062 | 0.7590 | 0.7857 | 0.8548 | 0.8188 | 0.9252 | 0.8170 | 0.8689 | 0.8415 | 0.9291 | 0.9252 | 0.9267 |
0.0044 | 40.0 | 2680 | 0.9215 | 0.9718 | 0.9386 | 0.9549 | 0.7882 | 0.8792 | 0.8312 | 0.7045 | 0.8166 | 0.7564 | 0.7608 | 0.8650 | 0.8096 | 0.9226 | 0.8063 | 0.8749 | 0.8380 | 0.9284 | 0.9226 | 0.9246 |
0.0044 | 41.0 | 2747 | 0.9658 | 0.9688 | 0.9435 | 0.9560 | 0.7901 | 0.8757 | 0.8307 | 0.7196 | 0.7993 | 0.7574 | 0.7820 | 0.8507 | 0.8149 | 0.9244 | 0.8151 | 0.8673 | 0.8397 | 0.9285 | 0.9244 | 0.9259 |
0.0044 | 42.0 | 2814 | 0.9644 | 0.9690 | 0.9434 | 0.9560 | 0.8016 | 0.8757 | 0.8370 | 0.6994 | 0.8131 | 0.752 | 0.7879 | 0.8507 | 0.8181 | 0.9249 | 0.8145 | 0.8707 | 0.8408 | 0.9292 | 0.9249 | 0.9265 |
0.0044 | 43.0 | 2881 | 0.9738 | 0.9685 | 0.9453 | 0.9568 | 0.8060 | 0.8632 | 0.8336 | 0.7082 | 0.8062 | 0.7540 | 0.7790 | 0.8507 | 0.8133 | 0.9250 | 0.8154 | 0.8664 | 0.8394 | 0.9289 | 0.9250 | 0.9265 |
0.0044 | 44.0 | 2948 | 0.9369 | 0.9707 | 0.9411 | 0.9556 | 0.7771 | 0.8917 | 0.8304 | 0.6967 | 0.8028 | 0.7460 | 0.7985 | 0.8507 | 0.8238 | 0.9240 | 0.8107 | 0.8715 | 0.8390 | 0.9291 | 0.9240 | 0.9258 |
0.0026 | 45.0 | 3015 | 0.9617 | 0.9702 | 0.9430 | 0.9564 | 0.8016 | 0.8757 | 0.8370 | 0.7147 | 0.8062 | 0.7577 | 0.7784 | 0.8691 | 0.8213 | 0.9256 | 0.8162 | 0.8735 | 0.8431 | 0.9301 | 0.9256 | 0.9273 |
0.0026 | 46.0 | 3082 | 0.9485 | 0.9700 | 0.9445 | 0.9571 | 0.7961 | 0.8810 | 0.8364 | 0.7087 | 0.8166 | 0.7588 | 0.7950 | 0.8487 | 0.8210 | 0.9262 | 0.8175 | 0.8727 | 0.8433 | 0.9305 | 0.9262 | 0.9278 |
0.0026 | 47.0 | 3149 | 0.9604 | 0.9697 | 0.9453 | 0.9573 | 0.7971 | 0.8792 | 0.8361 | 0.7033 | 0.8201 | 0.7572 | 0.8016 | 0.8425 | 0.8215 | 0.9264 | 0.8179 | 0.8718 | 0.8430 | 0.9305 | 0.9264 | 0.9279 |
0.0026 | 48.0 | 3216 | 0.9488 | 0.9700 | 0.9432 | 0.9564 | 0.8029 | 0.8757 | 0.8377 | 0.6848 | 0.8270 | 0.7492 | 0.7912 | 0.8446 | 0.8170 | 0.9249 | 0.8122 | 0.8726 | 0.8401 | 0.9297 | 0.9249 | 0.9266 |
0.0026 | 49.0 | 3283 | 0.9857 | 0.9692 | 0.9434 | 0.9561 | 0.8 | 0.8810 | 0.8385 | 0.7064 | 0.7993 | 0.75 | 0.7861 | 0.8569 | 0.8200 | 0.9252 | 0.8154 | 0.8701 | 0.8412 | 0.9294 | 0.9252 | 0.9267 |
0.0026 | 50.0 | 3350 | 1.0184 | 0.9674 | 0.9470 | 0.9571 | 0.8076 | 0.8721 | 0.8386 | 0.7090 | 0.7924 | 0.7484 | 0.7981 | 0.8487 | 0.8226 | 0.9264 | 0.8205 | 0.8650 | 0.8417 | 0.9296 | 0.9264 | 0.9277 |
0.0026 | 51.0 | 3417 | 0.9627 | 0.9698 | 0.9422 | 0.9558 | 0.8 | 0.8810 | 0.8385 | 0.6921 | 0.8166 | 0.7492 | 0.7898 | 0.8528 | 0.8201 | 0.9247 | 0.8129 | 0.8731 | 0.8409 | 0.9295 | 0.9247 | 0.9265 |
0.0026 | 52.0 | 3484 | 0.9409 | 0.9710 | 0.9397 | 0.9551 | 0.7921 | 0.8863 | 0.8365 | 0.6879 | 0.8235 | 0.7496 | 0.7861 | 0.8569 | 0.8200 | 0.9238 | 0.8093 | 0.8766 | 0.8403 | 0.9293 | 0.9238 | 0.9258 |
0.0019 | 53.0 | 3551 | 0.9855 | 0.9687 | 0.9439 | 0.9561 | 0.8003 | 0.8757 | 0.8363 | 0.7009 | 0.8028 | 0.7484 | 0.7951 | 0.8569 | 0.8248 | 0.9253 | 0.8162 | 0.8698 | 0.8414 | 0.9294 | 0.9253 | 0.9269 |
0.0019 | 54.0 | 3618 | 0.9728 | 0.9690 | 0.9434 | 0.9560 | 0.7990 | 0.8757 | 0.8356 | 0.6976 | 0.8062 | 0.7480 | 0.7917 | 0.8548 | 0.8220 | 0.9249 | 0.8143 | 0.8700 | 0.8404 | 0.9292 | 0.9249 | 0.9265 |
0.0019 | 55.0 | 3685 | 0.9698 | 0.9690 | 0.9434 | 0.9560 | 0.8016 | 0.8757 | 0.8370 | 0.6914 | 0.8062 | 0.7444 | 0.7894 | 0.8507 | 0.8189 | 0.9246 | 0.8129 | 0.8690 | 0.8391 | 0.9290 | 0.9246 | 0.9262 |
0.0019 | 56.0 | 3752 | 0.9834 | 0.9687 | 0.9437 | 0.9560 | 0.8013 | 0.8739 | 0.8360 | 0.6988 | 0.8028 | 0.7472 | 0.7921 | 0.8569 | 0.8232 | 0.9250 | 0.8152 | 0.8693 | 0.8406 | 0.9292 | 0.9250 | 0.9266 |
0.0019 | 57.0 | 3819 | 0.9646 | 0.9696 | 0.9424 | 0.9558 | 0.7961 | 0.8810 | 0.8364 | 0.6955 | 0.8062 | 0.7468 | 0.7883 | 0.8528 | 0.8193 | 0.9244 | 0.8124 | 0.8706 | 0.8396 | 0.9290 | 0.9244 | 0.9261 |
0.0019 | 58.0 | 3886 | 0.9961 | 0.9683 | 0.9449 | 0.9565 | 0.8026 | 0.8739 | 0.8367 | 0.6979 | 0.7993 | 0.7452 | 0.7973 | 0.8528 | 0.8241 | 0.9255 | 0.8165 | 0.8677 | 0.8406 | 0.9294 | 0.9255 | 0.9270 |
0.0019 | 59.0 | 3953 | 0.9789 | 0.9692 | 0.9432 | 0.9560 | 0.7971 | 0.8792 | 0.8361 | 0.6988 | 0.8028 | 0.7472 | 0.7917 | 0.8548 | 0.8220 | 0.9249 | 0.8142 | 0.8700 | 0.8403 | 0.9292 | 0.9249 | 0.9265 |
0.0013 | 60.0 | 4020 | 0.9802 | 0.9692 | 0.9435 | 0.9562 | 0.7997 | 0.8792 | 0.8376 | 0.6988 | 0.8028 | 0.7472 | 0.7917 | 0.8548 | 0.8220 | 0.9252 | 0.8148 | 0.8701 | 0.8407 | 0.9295 | 0.9252 | 0.9268 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 37
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for antoineedy/distilbert-base-uncased-finetuned-ner
Base model
distilbert/distilbert-base-uncased