SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/xlm-roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Most Common Apple Varieties',
'The most popular apple varieties are Cortland, Red Delicious, Golden Delicious, Empire, Fuji, Gala, Ida Red, Macoun, McIntosh, Northern Spy, and Winesap. Olwen Woodier also offers descriptions for an additional 20 varieties of apples in this very useful and informative cookbook. Cortland.',
'Well, rest easy, because this condensed list of the 18 most popular apple varieties breaks down the information every apple eater should knowâ\x80\x94how to cook them, best recipes, and when they are in season. Red Delicious: A popular eating apple that looks just how we all imagine an apple should.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 502,912 training samples
- Columns:
sentence_0
,sentence_1
,sentence_2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 label type string string string float details - min: 4 tokens
- mean: 9.88 tokens
- max: 59 tokens
- min: 19 tokens
- mean: 88.5 tokens
- max: 232 tokens
- min: 17 tokens
- mean: 87.87 tokens
- max: 282 tokens
- min: -16.56
- mean: 0.96
- max: 20.84
- Samples:
sentence_0 sentence_1 sentence_2 label how long are bank issued checks good for
Your mom is correct....most checks are good for anywhere between 180 days up to 1 year. Sorry, but you probably won't be able to cash those checks, although it never hurts to check with your bank on the issue. DH · 9 years ago.
Non-local personal and business checks. If the check is from a bank in a different federal reserve district than the depositing bank, it can be held for 5 business days under normal circumstances. Exceptions for new customers during the first 30 days. Banks are not required to give next day ability on the first $100 of deposits, and both local and non-local personal and business checks can be held for a maximum of 11 business days.
2.6526598930358887
11:11 meaning
11-11-11 11:11:11 example. 11-11 11:11 example. Numerologists believe that events linked to the time 11:11 appear more often than can be explained by chance or coincidence. This belief is related to the concept of synchronicity. Some authors claim that seeing 11:11 on a clock is an auspicious sign.
Sometimes it's difficult to describe what seeing the 11:11 means, because it is a personal experience for everyone. If you feel you are having these experiences for a reason, then it might be that only you will know what these number prompts and wake-up calls mean.
-1.3284940719604492
did someone from pawn stars die
Did someone from pawn stars on history channel die? kgb answers » Arts & Entertainment » Actors and Actresses » Did someone from pawn stars on history channel die? None from the actors & cast of Pawn Stars died. There was a rumor that Leonard Shaffer, a coin expert, died but it is not true. He is alive & well. Tags: pawn stars, lists of actors.
Austin Russell, also known as Chumlee, star of History's reality series Pawn Stars, has died from an apparent heart attack, sources confirm to eBuzzd.
1.7131614685058594
- Loss:
MarginMSELoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 30fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 30max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0636 | 500 | 92.5416 |
0.1273 | 1000 | 20.6659 |
0.1909 | 1500 | 14.7631 |
0.2545 | 2000 | 14.3025 |
0.3181 | 2500 | 13.5257 |
0.3818 | 3000 | 12.8666 |
0.4454 | 3500 | 12.397 |
0.5090 | 4000 | 12.2718 |
0.5727 | 4500 | 11.539 |
0.6363 | 5000 | 11.1145 |
0.6999 | 5500 | 11.1232 |
0.7636 | 6000 | 10.6021 |
0.8272 | 6500 | 10.4115 |
0.8908 | 7000 | 10.4529 |
0.9544 | 7500 | 10.1329 |
1.0181 | 8000 | 10.1367 |
1.0817 | 8500 | 9.5914 |
1.1453 | 9000 | 9.2799 |
1.2090 | 9500 | 9.266 |
1.2726 | 10000 | 9.1661 |
1.3362 | 10500 | 8.954 |
1.3998 | 11000 | 8.9562 |
1.4635 | 11500 | 9.4717 |
1.5271 | 12000 | 8.6758 |
1.5907 | 12500 | 8.87 |
1.6544 | 13000 | 8.5826 |
1.7180 | 13500 | 8.4827 |
1.7816 | 14000 | 8.5306 |
1.8453 | 14500 | 8.182 |
1.9089 | 15000 | 8.3592 |
1.9725 | 15500 | 8.3879 |
2.0361 | 16000 | 7.4399 |
2.0998 | 16500 | 7.0406 |
2.1634 | 17000 | 6.89 |
2.2270 | 17500 | 6.8651 |
2.2907 | 18000 | 6.8461 |
2.3543 | 18500 | 6.7663 |
2.4179 | 19000 | 6.9313 |
2.4815 | 19500 | 6.9688 |
2.5452 | 20000 | 6.7821 |
2.6088 | 20500 | 6.9468 |
2.6724 | 21000 | 6.731 |
2.7361 | 21500 | 6.649 |
2.7997 | 22000 | 6.7055 |
2.8633 | 22500 | 6.7744 |
2.9270 | 23000 | 6.9481 |
2.9906 | 23500 | 6.5967 |
3.0542 | 24000 | 5.7351 |
3.1178 | 24500 | 5.4125 |
3.1815 | 25000 | 5.4095 |
3.2451 | 25500 | 5.4253 |
3.3087 | 26000 | 5.3774 |
3.3724 | 26500 | 5.5277 |
3.4360 | 27000 | 5.4516 |
3.4996 | 27500 | 5.322 |
3.5632 | 28000 | 5.5531 |
3.6269 | 28500 | 5.5238 |
3.6905 | 29000 | 5.5992 |
3.7541 | 29500 | 5.5351 |
3.8178 | 30000 | 5.3985 |
3.8814 | 30500 | 5.4313 |
3.9450 | 31000 | 5.4173 |
4.0087 | 31500 | 5.2333 |
4.0723 | 32000 | 4.3352 |
4.1359 | 32500 | 4.3442 |
4.1995 | 33000 | 4.3288 |
4.2632 | 33500 | 4.367 |
4.3268 | 34000 | 4.4607 |
4.3904 | 34500 | 4.4461 |
4.4541 | 35000 | 4.6218 |
4.5177 | 35500 | 4.4249 |
4.5813 | 36000 | 4.4129 |
4.6449 | 36500 | 4.4065 |
4.7086 | 37000 | 4.5452 |
4.7722 | 37500 | 4.5411 |
4.8358 | 38000 | 4.5423 |
4.8995 | 38500 | 4.4942 |
4.9631 | 39000 | 4.5332 |
5.0267 | 39500 | 4.0759 |
5.0904 | 40000 | 3.6274 |
5.1540 | 40500 | 3.6795 |
5.2176 | 41000 | 3.6741 |
5.2812 | 41500 | 3.7396 |
5.3449 | 42000 | 3.6839 |
5.4085 | 42500 | 3.732 |
5.4721 | 43000 | 3.6557 |
5.5358 | 43500 | 3.6925 |
5.5994 | 44000 | 3.7149 |
5.6630 | 44500 | 3.6744 |
5.7266 | 45000 | 3.7669 |
5.7903 | 45500 | 3.651 |
5.8539 | 46000 | 3.721 |
5.9175 | 46500 | 3.7012 |
5.9812 | 47000 | 3.7294 |
6.0448 | 47500 | 3.2432 |
6.1084 | 48000 | 3.0295 |
6.1721 | 48500 | 3.0364 |
6.2357 | 49000 | 3.0687 |
6.2993 | 49500 | 3.064 |
6.3629 | 50000 | 3.112 |
6.4266 | 50500 | 3.1438 |
6.4902 | 51000 | 3.0733 |
6.5538 | 51500 | 3.1719 |
6.6175 | 52000 | 3.1355 |
6.6811 | 52500 | 3.1612 |
6.7447 | 53000 | 3.1938 |
6.8083 | 53500 | 3.1375 |
6.8720 | 54000 | 3.1969 |
6.9356 | 54500 | 3.2214 |
6.9992 | 55000 | 3.1364 |
7.0629 | 55500 | 2.63 |
7.1265 | 56000 | 2.5451 |
7.1901 | 56500 | 2.644 |
7.2538 | 57000 | 2.6482 |
7.3174 | 57500 | 2.6017 |
7.3810 | 58000 | 2.6626 |
7.4446 | 58500 | 2.6698 |
7.5083 | 59000 | 2.6595 |
7.5719 | 59500 | 2.6683 |
7.6355 | 60000 | 2.7187 |
7.6992 | 60500 | 2.6213 |
7.7628 | 61000 | 2.7119 |
7.8264 | 61500 | 2.739 |
7.8900 | 62000 | 2.686 |
7.9537 | 62500 | 2.7295 |
8.0173 | 63000 | 2.6062 |
8.0809 | 63500 | 2.2272 |
8.1446 | 64000 | 2.2692 |
8.2082 | 64500 | 2.3135 |
8.2718 | 65000 | 2.2546 |
8.3355 | 65500 | 2.2882 |
8.3991 | 66000 | 2.2749 |
8.4627 | 66500 | 2.363 |
8.5263 | 67000 | 2.2923 |
8.5900 | 67500 | 2.3275 |
8.6536 | 68000 | 2.3738 |
8.7172 | 68500 | 2.3416 |
8.7809 | 69000 | 2.3851 |
8.8445 | 69500 | 2.3356 |
8.9081 | 70000 | 2.3598 |
8.9717 | 70500 | 2.4272 |
9.0354 | 71000 | 2.141 |
9.0990 | 71500 | 2.001 |
9.1626 | 72000 | 2.014 |
9.2263 | 72500 | 1.9826 |
9.2899 | 73000 | 1.995 |
9.3535 | 73500 | 2.0097 |
9.4172 | 74000 | 2.0412 |
9.4808 | 74500 | 2.0144 |
9.5444 | 75000 | 2.0653 |
9.6080 | 75500 | 2.022 |
9.6717 | 76000 | 2.0327 |
9.7353 | 76500 | 2.0596 |
9.7989 | 77000 | 2.0761 |
9.8626 | 77500 | 2.1245 |
9.9262 | 78000 | 2.1062 |
9.9898 | 78500 | 2.1186 |
10.0534 | 79000 | 1.8283 |
10.1171 | 79500 | 1.7627 |
10.1807 | 80000 | 1.7775 |
10.2443 | 80500 | 1.7865 |
10.3080 | 81000 | 1.8018 |
10.3716 | 81500 | 1.7851 |
10.4352 | 82000 | 1.8085 |
10.4989 | 82500 | 1.8293 |
10.5625 | 83000 | 1.8549 |
10.6261 | 83500 | 1.8531 |
10.6897 | 84000 | 1.8538 |
10.7534 | 84500 | 1.8814 |
10.8170 | 85000 | 1.8576 |
10.8806 | 85500 | 1.8516 |
10.9443 | 86000 | 1.8555 |
11.0079 | 86500 | 1.8631 |
11.0715 | 87000 | 1.6189 |
11.1351 | 87500 | 1.6143 |
11.1988 | 88000 | 1.6246 |
11.2624 | 88500 | 1.5997 |
11.3260 | 89000 | 1.646 |
11.3897 | 89500 | 1.6323 |
11.4533 | 90000 | 1.6623 |
11.5169 | 90500 | 1.6544 |
11.5806 | 91000 | 1.6671 |
11.6442 | 91500 | 1.6742 |
11.7078 | 92000 | 1.6409 |
11.7714 | 92500 | 1.6504 |
11.8351 | 93000 | 1.6791 |
11.8987 | 93500 | 1.6923 |
11.9623 | 94000 | 1.697 |
12.0260 | 94500 | 1.6136 |
12.0896 | 95000 | 1.4437 |
12.1532 | 95500 | 1.49 |
12.2168 | 96000 | 1.4567 |
12.2805 | 96500 | 1.5007 |
12.3441 | 97000 | 1.4826 |
12.4077 | 97500 | 1.4668 |
12.4714 | 98000 | 1.5009 |
12.5350 | 98500 | 1.5008 |
12.5986 | 99000 | 1.5336 |
12.6623 | 99500 | 1.5057 |
12.7259 | 100000 | 1.5081 |
12.7895 | 100500 | 1.5402 |
12.8531 | 101000 | 1.5519 |
12.9168 | 101500 | 1.5171 |
12.9804 | 102000 | 1.5249 |
13.0440 | 102500 | 1.4117 |
13.1077 | 103000 | 1.3524 |
13.1713 | 103500 | 1.3564 |
13.2349 | 104000 | 1.3483 |
13.2985 | 104500 | 1.386 |
13.3622 | 105000 | 1.3723 |
13.4258 | 105500 | 1.3933 |
13.4894 | 106000 | 1.3672 |
13.5531 | 106500 | 1.3796 |
13.6167 | 107000 | 1.3637 |
13.6803 | 107500 | 1.4061 |
13.7440 | 108000 | 1.3897 |
13.8076 | 108500 | 1.4342 |
13.8712 | 109000 | 1.3821 |
13.9348 | 109500 | 1.411 |
13.9985 | 110000 | 1.4214 |
14.0621 | 110500 | 1.2551 |
14.1257 | 111000 | 1.2366 |
14.1894 | 111500 | 1.2553 |
14.2530 | 112000 | 1.2553 |
14.3166 | 112500 | 1.2624 |
14.3802 | 113000 | 1.2771 |
14.4439 | 113500 | 1.2744 |
14.5075 | 114000 | 1.2616 |
14.5711 | 114500 | 1.2744 |
14.6348 | 115000 | 1.2705 |
14.6984 | 115500 | 1.3005 |
14.7620 | 116000 | 1.3013 |
14.8257 | 116500 | 1.298 |
14.8893 | 117000 | 1.2972 |
14.9529 | 117500 | 1.277 |
15.0165 | 118000 | 1.2718 |
15.0802 | 118500 | 1.1697 |
15.1438 | 119000 | 1.1819 |
15.2074 | 119500 | 1.1916 |
15.2711 | 120000 | 1.1829 |
15.3347 | 120500 | 1.1632 |
15.3983 | 121000 | 1.1809 |
15.4619 | 121500 | 1.1913 |
15.5256 | 122000 | 1.1916 |
15.5892 | 122500 | 1.1969 |
15.6528 | 123000 | 1.1929 |
15.7165 | 123500 | 1.2086 |
15.7801 | 124000 | 1.1864 |
15.8437 | 124500 | 1.2068 |
15.9074 | 125000 | 1.2253 |
15.9710 | 125500 | 1.1963 |
16.0346 | 126000 | 1.1585 |
16.0982 | 126500 | 1.0834 |
16.1619 | 127000 | 1.0937 |
16.2255 | 127500 | 1.0995 |
16.2891 | 128000 | 1.0787 |
16.3528 | 128500 | 1.1217 |
16.4164 | 129000 | 1.1185 |
16.4800 | 129500 | 1.1203 |
16.5436 | 130000 | 1.1201 |
16.6073 | 130500 | 1.125 |
16.6709 | 131000 | 1.1214 |
16.7345 | 131500 | 1.1228 |
16.7982 | 132000 | 1.1381 |
16.8618 | 132500 | 1.1414 |
16.9254 | 133000 | 1.123 |
16.9891 | 133500 | 1.1003 |
17.0527 | 134000 | 1.0447 |
17.1163 | 134500 | 1.036 |
17.1799 | 135000 | 1.0264 |
17.2436 | 135500 | 1.0375 |
17.3072 | 136000 | 1.0509 |
17.3708 | 136500 | 1.0452 |
17.4345 | 137000 | 1.0519 |
17.4981 | 137500 | 1.0498 |
17.5617 | 138000 | 1.0514 |
17.6253 | 138500 | 1.054 |
17.6890 | 139000 | 1.0457 |
17.7526 | 139500 | 1.0582 |
17.8162 | 140000 | 1.0566 |
17.8799 | 140500 | 1.0644 |
17.9435 | 141000 | 1.0579 |
18.0071 | 141500 | 1.0647 |
18.0708 | 142000 | 0.9704 |
18.1344 | 142500 | 0.9787 |
18.1980 | 143000 | 0.9875 |
18.2616 | 143500 | 0.987 |
18.3253 | 144000 | 0.9834 |
18.3889 | 144500 | 0.999 |
18.4525 | 145000 | 0.9872 |
18.5162 | 145500 | 0.9851 |
18.5798 | 146000 | 0.9986 |
18.6434 | 146500 | 0.9853 |
18.7071 | 147000 | 0.9973 |
18.7707 | 147500 | 0.988 |
18.8343 | 148000 | 0.999 |
18.8979 | 148500 | 0.9899 |
18.9616 | 149000 | 1.0053 |
19.0252 | 149500 | 0.9802 |
19.0888 | 150000 | 0.9301 |
19.1525 | 150500 | 0.9295 |
19.2161 | 151000 | 0.9334 |
19.2797 | 151500 | 0.9503 |
19.3433 | 152000 | 0.9161 |
19.4070 | 152500 | 0.9433 |
19.4706 | 153000 | 0.9376 |
19.5342 | 153500 | 0.9274 |
19.5979 | 154000 | 0.9414 |
19.6615 | 154500 | 0.94 |
19.7251 | 155000 | 0.9344 |
19.7888 | 155500 | 0.9464 |
19.8524 | 156000 | 0.9583 |
19.9160 | 156500 | 0.953 |
19.9796 | 157000 | 0.9481 |
20.0433 | 157500 | 0.8982 |
20.1069 | 158000 | 0.8974 |
20.1705 | 158500 | 0.9022 |
20.2342 | 159000 | 0.8923 |
20.2978 | 159500 | 0.8935 |
20.3614 | 160000 | 0.8917 |
20.4250 | 160500 | 0.9021 |
20.4887 | 161000 | 0.8978 |
20.5523 | 161500 | 0.9078 |
20.6159 | 162000 | 0.903 |
20.6796 | 162500 | 0.8989 |
20.7432 | 163000 | 0.9023 |
20.8068 | 163500 | 0.8918 |
20.8705 | 164000 | 0.8968 |
20.9341 | 164500 | 0.8977 |
20.9977 | 165000 | 0.9035 |
21.0613 | 165500 | 0.8347 |
21.1250 | 166000 | 0.8415 |
21.1886 | 166500 | 0.8472 |
21.2522 | 167000 | 0.8663 |
21.3159 | 167500 | 0.8633 |
21.3795 | 168000 | 0.8569 |
21.4431 | 168500 | 0.8529 |
21.5067 | 169000 | 0.8485 |
21.5704 | 169500 | 0.8759 |
21.6340 | 170000 | 0.8667 |
21.6976 | 170500 | 0.8615 |
21.7613 | 171000 | 0.8623 |
21.8249 | 171500 | 0.8613 |
21.8885 | 172000 | 0.8515 |
21.9522 | 172500 | 0.8615 |
22.0158 | 173000 | 0.8457 |
22.0794 | 173500 | 0.8106 |
22.1430 | 174000 | 0.8109 |
22.2067 | 174500 | 0.8108 |
22.2703 | 175000 | 0.8197 |
22.3339 | 175500 | 0.8165 |
22.3976 | 176000 | 0.8289 |
22.4612 | 176500 | 0.8288 |
22.5248 | 177000 | 0.8145 |
22.5884 | 177500 | 0.8249 |
22.6521 | 178000 | 0.8218 |
22.7157 | 178500 | 0.8284 |
22.7793 | 179000 | 0.833 |
22.8430 | 179500 | 0.8176 |
22.9066 | 180000 | 0.8431 |
22.9702 | 180500 | 0.8234 |
23.0339 | 181000 | 0.7998 |
23.0975 | 181500 | 0.7821 |
23.1611 | 182000 | 0.7914 |
23.2247 | 182500 | 0.7851 |
23.2884 | 183000 | 0.7797 |
23.3520 | 183500 | 0.7931 |
23.4156 | 184000 | 0.7912 |
23.4793 | 184500 | 0.7876 |
23.5429 | 185000 | 0.7954 |
23.6065 | 185500 | 0.7946 |
23.6701 | 186000 | 0.7782 |
23.7338 | 186500 | 0.7952 |
23.7974 | 187000 | 0.8015 |
23.8610 | 187500 | 0.7977 |
23.9247 | 188000 | 0.7875 |
23.9883 | 188500 | 0.7935 |
24.0519 | 189000 | 0.7617 |
24.1156 | 189500 | 0.7625 |
24.1792 | 190000 | 0.7514 |
24.2428 | 190500 | 0.7662 |
24.3064 | 191000 | 0.7692 |
24.3701 | 191500 | 0.7733 |
24.4337 | 192000 | 0.7561 |
24.4973 | 192500 | 0.7577 |
24.5610 | 193000 | 0.7687 |
24.6246 | 193500 | 0.7647 |
24.6882 | 194000 | 0.7717 |
24.7518 | 194500 | 0.761 |
24.8155 | 195000 | 0.7661 |
24.8791 | 195500 | 0.7446 |
24.9427 | 196000 | 0.7659 |
25.0064 | 196500 | 0.7559 |
25.0700 | 197000 | 0.7183 |
25.1336 | 197500 | 0.7399 |
25.1973 | 198000 | 0.7308 |
25.2609 | 198500 | 0.733 |
25.3245 | 199000 | 0.746 |
25.3881 | 199500 | 0.7274 |
25.4518 | 200000 | 0.7358 |
25.5154 | 200500 | 0.7468 |
25.5790 | 201000 | 0.734 |
25.6427 | 201500 | 0.7493 |
25.7063 | 202000 | 0.7263 |
25.7699 | 202500 | 0.7355 |
25.8335 | 203000 | 0.745 |
25.8972 | 203500 | 0.7301 |
25.9608 | 204000 | 0.7457 |
26.0244 | 204500 | 0.7072 |
26.0881 | 205000 | 0.7212 |
26.1517 | 205500 | 0.7186 |
26.2153 | 206000 | 0.7225 |
26.2790 | 206500 | 0.7065 |
26.3426 | 207000 | 0.7153 |
26.4062 | 207500 | 0.72 |
26.4698 | 208000 | 0.7074 |
26.5335 | 208500 | 0.7117 |
26.5971 | 209000 | 0.7206 |
26.6607 | 209500 | 0.7132 |
26.7244 | 210000 | 0.7199 |
26.7880 | 210500 | 0.7102 |
26.8516 | 211000 | 0.7155 |
26.9152 | 211500 | 0.7057 |
26.9789 | 212000 | 0.7191 |
27.0425 | 212500 | 0.6942 |
27.1061 | 213000 | 0.6924 |
27.1698 | 213500 | 0.7025 |
27.2334 | 214000 | 0.6911 |
27.2970 | 214500 | 0.6955 |
27.3607 | 215000 | 0.6875 |
27.4243 | 215500 | 0.698 |
27.4879 | 216000 | 0.7054 |
27.5515 | 216500 | 0.6968 |
27.6152 | 217000 | 0.7044 |
27.6788 | 217500 | 0.6946 |
27.7424 | 218000 | 0.6865 |
27.8061 | 218500 | 0.6974 |
27.8697 | 219000 | 0.698 |
27.9333 | 219500 | 0.6943 |
27.9969 | 220000 | 0.6985 |
28.0606 | 220500 | 0.6785 |
28.1242 | 221000 | 0.6842 |
28.1878 | 221500 | 0.6832 |
28.2515 | 222000 | 0.6863 |
28.3151 | 222500 | 0.6806 |
28.3787 | 223000 | 0.6897 |
28.4424 | 223500 | 0.6975 |
28.5060 | 224000 | 0.6802 |
28.5696 | 224500 | 0.6836 |
28.6332 | 225000 | 0.6849 |
28.6969 | 225500 | 0.6781 |
28.7605 | 226000 | 0.6761 |
28.8241 | 226500 | 0.6762 |
28.8878 | 227000 | 0.6781 |
28.9514 | 227500 | 0.682 |
29.0150 | 228000 | 0.6742 |
29.0786 | 228500 | 0.6595 |
29.1423 | 229000 | 0.683 |
29.2059 | 229500 | 0.6721 |
29.2695 | 230000 | 0.669 |
29.3332 | 230500 | 0.683 |
29.3968 | 231000 | 0.6652 |
29.4604 | 231500 | 0.671 |
29.5241 | 232000 | 0.6662 |
29.5877 | 232500 | 0.6665 |
29.6513 | 233000 | 0.6718 |
29.7149 | 233500 | 0.6657 |
29.7786 | 234000 | 0.6677 |
29.8422 | 234500 | 0.6732 |
29.9058 | 235000 | 0.6687 |
29.9695 | 235500 | 0.6732 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.4.0
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 2.21.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MarginMSELoss
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for anonymous202501/xlm-roberta-base-msmarco
Base model
FacebookAI/xlm-roberta-base