metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: nosql-identifier-bert
results: []
nosql-identifier-bert
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1785
- Accuracy: 0.975
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 40 | 0.5065 | 0.9 |
No log | 2.0 | 80 | 0.1797 | 0.975 |
No log | 3.0 | 120 | 0.3728 | 0.8 |
No log | 4.0 | 160 | 0.1881 | 0.925 |
No log | 5.0 | 200 | 0.1524 | 0.95 |
No log | 6.0 | 240 | 0.1662 | 0.9 |
No log | 7.0 | 280 | 0.2983 | 0.9 |
No log | 8.0 | 320 | 0.1435 | 0.975 |
No log | 9.0 | 360 | 0.1648 | 0.975 |
No log | 10.0 | 400 | 0.1821 | 0.975 |
No log | 11.0 | 440 | 0.3313 | 0.95 |
No log | 12.0 | 480 | 0.2157 | 0.95 |
0.2728 | 13.0 | 520 | 0.3267 | 0.95 |
0.2728 | 14.0 | 560 | 0.1715 | 0.975 |
0.2728 | 15.0 | 600 | 0.1850 | 0.975 |
0.2728 | 16.0 | 640 | 0.2443 | 0.95 |
0.2728 | 17.0 | 680 | 0.1755 | 0.975 |
0.2728 | 18.0 | 720 | 0.1747 | 0.975 |
0.2728 | 19.0 | 760 | 0.1763 | 0.975 |
0.2728 | 20.0 | 800 | 0.1785 | 0.975 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.11.0