t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol

This model is a fine-tuned version of anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0117
  • Bleu: 26.9533
  • Gen Len: 18.7206

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 17 0.6271 21.6075 18.6912
No log 2.0 34 0.4985 21.6117 18.6912
No log 3.0 51 0.4213 22.1637 18.6912
No log 4.0 68 0.3745 22.4107 18.6912
No log 5.0 85 0.3410 22.8843 18.6912
No log 6.0 102 0.3200 22.8262 18.6912
No log 7.0 119 0.2925 22.6535 18.6912
No log 8.0 136 0.2790 22.733 18.6912
No log 9.0 153 0.2696 23.0984 18.6912
No log 10.0 170 0.2550 22.7433 18.6912
No log 11.0 187 0.2449 22.959 18.6912
No log 12.0 204 0.2301 23.2707 18.6912
No log 13.0 221 0.2222 23.1237 18.6912
No log 14.0 238 0.2098 23.2703 18.6912
No log 15.0 255 0.2010 23.406 18.6912
No log 16.0 272 0.1926 23.5024 18.6912
No log 17.0 289 0.1871 23.644 18.6912
No log 18.0 306 0.1801 23.8176 18.6912
No log 19.0 323 0.1714 23.5624 18.6912
No log 20.0 340 0.1640 23.8308 18.6912
No log 21.0 357 0.1582 23.7387 18.6912
No log 22.0 374 0.1532 23.4223 18.6912
No log 23.0 391 0.1493 23.4963 18.6912
No log 24.0 408 0.1469 23.4319 18.6912
No log 25.0 425 0.1408 23.7634 18.6912
No log 26.0 442 0.1367 23.6347 18.6912
No log 27.0 459 0.1316 23.6694 18.6912
No log 28.0 476 0.1274 23.9273 18.6912
No log 29.0 493 0.1237 24.0772 18.6912
0.3817 30.0 510 0.1190 24.3082 18.6912
0.3817 31.0 527 0.1172 24.4804 18.6691
0.3817 32.0 544 0.1137 24.2785 18.6691
0.3817 33.0 561 0.1107 24.2177 18.6912
0.3817 34.0 578 0.1060 23.6294 18.6912
0.3817 35.0 595 0.1019 24.2786 18.6912
0.3817 36.0 612 0.0991 24.4832 18.6691
0.3817 37.0 629 0.0976 24.7323 18.6691
0.3817 38.0 646 0.0966 24.5546 18.6691
0.3817 39.0 663 0.0951 24.6238 18.6691
0.3817 40.0 680 0.0918 24.4027 18.6691
0.3817 41.0 697 0.0892 24.5354 18.6691
0.3817 42.0 714 0.0866 24.427 18.6691
0.3817 43.0 731 0.0851 24.0645 18.6691
0.3817 44.0 748 0.0836 24.2317 18.6691
0.3817 45.0 765 0.0816 24.4578 18.6691
0.3817 46.0 782 0.0799 24.5216 18.6691
0.3817 47.0 799 0.0774 24.7976 18.6691
0.3817 48.0 816 0.0755 24.6819 18.6691
0.3817 49.0 833 0.0725 24.7607 18.6691
0.3817 50.0 850 0.0720 24.9414 18.6691
0.3817 51.0 867 0.0708 24.6746 18.6691
0.3817 52.0 884 0.0694 24.791 18.6691
0.3817 53.0 901 0.0667 24.7417 18.6691
0.3817 54.0 918 0.0657 24.8431 18.6691
0.3817 55.0 935 0.0645 25.0305 18.6691
0.3817 56.0 952 0.0639 24.986 18.6691
0.3817 57.0 969 0.0615 24.986 18.6691
0.3817 58.0 986 0.0603 25.0536 18.6691
0.2006 59.0 1003 0.0587 25.014 18.6691
0.2006 60.0 1020 0.0576 25.0981 18.6691
0.2006 61.0 1037 0.0573 25.0262 18.6691
0.2006 62.0 1054 0.0548 25.0514 18.6691
0.2006 63.0 1071 0.0545 25.036 18.6691
0.2006 64.0 1088 0.0526 25.2406 18.6691
0.2006 65.0 1105 0.0511 25.276 18.6691
0.2006 66.0 1122 0.0511 25.2682 18.6691
0.2006 67.0 1139 0.0504 25.1104 18.6691
0.2006 68.0 1156 0.0513 25.2775 18.6691
0.2006 69.0 1173 0.0479 25.5063 18.6691
0.2006 70.0 1190 0.0470 25.4453 18.6691
0.2006 71.0 1207 0.0468 25.4056 18.6691
0.2006 72.0 1224 0.0451 25.4968 18.6691
0.2006 73.0 1241 0.0441 25.6183 18.6691
0.2006 74.0 1258 0.0432 25.6308 18.6691
0.2006 75.0 1275 0.0428 25.4817 18.6691
0.2006 76.0 1292 0.0417 25.6171 18.6691
0.2006 77.0 1309 0.0414 25.4539 18.6691
0.2006 78.0 1326 0.0413 25.4539 18.6691
0.2006 79.0 1343 0.0399 25.3733 18.6691
0.2006 80.0 1360 0.0393 25.6878 18.6691
0.2006 81.0 1377 0.0391 25.6461 18.6691
0.2006 82.0 1394 0.0384 25.8403 18.6691
0.2006 83.0 1411 0.0381 25.9332 18.6691
0.2006 84.0 1428 0.0374 25.9369 18.6691
0.2006 85.0 1445 0.0371 25.8831 18.6691
0.2006 86.0 1462 0.0369 25.7971 18.6691
0.2006 87.0 1479 0.0364 25.8831 18.6691
0.2006 88.0 1496 0.0353 25.918 18.6691
0.1412 89.0 1513 0.0347 26.0189 18.6691
0.1412 90.0 1530 0.0342 25.9848 18.6691
0.1412 91.0 1547 0.0338 25.9848 18.6691
0.1412 92.0 1564 0.0326 25.9451 18.6691
0.1412 93.0 1581 0.0328 26.1168 18.6691
0.1412 94.0 1598 0.0321 26.1039 18.6691
0.1412 95.0 1615 0.0318 26.1391 18.6691
0.1412 96.0 1632 0.0329 26.1391 18.6691
0.1412 97.0 1649 0.0299 26.1745 18.6691
0.1412 98.0 1666 0.0303 26.1917 18.6691
0.1412 99.0 1683 0.0290 26.0001 18.6691
0.1412 100.0 1700 0.0311 26.0437 18.6691
0.1412 101.0 1717 0.0280 26.1231 18.6691
0.1412 102.0 1734 0.0288 26.2359 18.6691
0.1412 103.0 1751 0.0279 26.2359 18.6691
0.1412 104.0 1768 0.0285 26.2976 18.6691
0.1412 105.0 1785 0.0263 26.3152 18.6691
0.1412 106.0 1802 0.0259 26.3548 18.6691
0.1412 107.0 1819 0.0255 26.3548 18.6691
0.1412 108.0 1836 0.0253 26.3548 18.6691
0.1412 109.0 1853 0.0241 26.377 18.6691
0.1412 110.0 1870 0.0247 26.3548 18.6691
0.1412 111.0 1887 0.0234 26.3901 18.6691
0.1412 112.0 1904 0.0224 26.4917 18.6691
0.1412 113.0 1921 0.0220 26.4297 18.6691
0.1412 114.0 1938 0.0223 26.3548 18.6691
0.1412 115.0 1955 0.0215 26.3548 18.6691
0.1412 116.0 1972 0.0211 26.3548 18.6691
0.1412 117.0 1989 0.0210 26.3548 18.6691
0.1097 118.0 2006 0.0204 26.3944 18.6691
0.1097 119.0 2023 0.0204 26.3944 18.6691
0.1097 120.0 2040 0.0200 26.3944 18.6691
0.1097 121.0 2057 0.0201 26.3944 18.6691
0.1097 122.0 2074 0.0196 26.3944 18.6691
0.1097 123.0 2091 0.0197 26.434 18.6691
0.1097 124.0 2108 0.0189 26.434 18.6691
0.1097 125.0 2125 0.0191 26.434 18.6691
0.1097 126.0 2142 0.0185 26.434 18.6691
0.1097 127.0 2159 0.0185 26.496 18.6691
0.1097 128.0 2176 0.0188 26.496 18.6691
0.1097 129.0 2193 0.0181 26.5709 18.6691
0.1097 130.0 2210 0.0179 26.5709 18.6691
0.1097 131.0 2227 0.0182 26.9088 18.7206
0.1097 132.0 2244 0.0180 26.936 18.7206
0.1097 133.0 2261 0.0173 26.936 18.7206
0.1097 134.0 2278 0.0176 26.936 18.7206
0.1097 135.0 2295 0.0167 26.936 18.7206
0.1097 136.0 2312 0.0181 26.8068 18.7206
0.1097 137.0 2329 0.0175 26.8738 18.7206
0.1097 138.0 2346 0.0158 26.8738 18.7206
0.1097 139.0 2363 0.0167 26.8738 18.7206
0.1097 140.0 2380 0.0166 26.8738 18.7206
0.1097 141.0 2397 0.0162 26.8738 18.7206
0.1097 142.0 2414 0.0160 26.8738 18.7206
0.1097 143.0 2431 0.0156 26.8738 18.7206
0.1097 144.0 2448 0.0160 26.8738 18.7206
0.1097 145.0 2465 0.0152 26.9135 18.7206
0.1097 146.0 2482 0.0148 26.9135 18.7206
0.1097 147.0 2499 0.0155 26.9135 18.7206
0.0913 148.0 2516 0.0149 26.9135 18.7206
0.0913 149.0 2533 0.0156 26.9135 18.7206
0.0913 150.0 2550 0.0155 26.9135 18.7206
0.0913 151.0 2567 0.0149 26.9135 18.7206
0.0913 152.0 2584 0.0142 26.9135 18.7206
0.0913 153.0 2601 0.0136 26.8738 18.7206
0.0913 154.0 2618 0.0141 26.8738 18.7206
0.0913 155.0 2635 0.0139 26.9135 18.7206
0.0913 156.0 2652 0.0136 26.9135 18.7206
0.0913 157.0 2669 0.0135 26.9135 18.7206
0.0913 158.0 2686 0.0141 26.9135 18.7206
0.0913 159.0 2703 0.0143 26.9135 18.7206
0.0913 160.0 2720 0.0134 26.9135 18.7206
0.0913 161.0 2737 0.0129 26.9135 18.7206
0.0913 162.0 2754 0.0129 26.9135 18.7206
0.0913 163.0 2771 0.0136 26.9135 18.7206
0.0913 164.0 2788 0.0131 26.9135 18.7206
0.0913 165.0 2805 0.0136 26.9135 18.7206
0.0913 166.0 2822 0.0131 26.9135 18.7206
0.0913 167.0 2839 0.0127 26.9135 18.7206
0.0913 168.0 2856 0.0128 26.9135 18.7206
0.0913 169.0 2873 0.0128 26.9533 18.7206
0.0913 170.0 2890 0.0131 26.9533 18.7206
0.0913 171.0 2907 0.0135 26.9533 18.7206
0.0913 172.0 2924 0.0132 26.9533 18.7206
0.0913 173.0 2941 0.0128 26.9533 18.7206
0.0913 174.0 2958 0.0127 26.9533 18.7206
0.0913 175.0 2975 0.0128 26.9533 18.7206
0.0913 176.0 2992 0.0127 26.9533 18.7206
0.0819 177.0 3009 0.0122 26.9533 18.7206
0.0819 178.0 3026 0.0119 26.9533 18.7206
0.0819 179.0 3043 0.0120 26.9533 18.7206
0.0819 180.0 3060 0.0123 26.9533 18.7206
0.0819 181.0 3077 0.0123 26.9533 18.7206
0.0819 182.0 3094 0.0122 26.9533 18.7206
0.0819 183.0 3111 0.0122 26.9533 18.7206
0.0819 184.0 3128 0.0121 26.9533 18.7206
0.0819 185.0 3145 0.0120 26.9533 18.7206
0.0819 186.0 3162 0.0119 26.9533 18.7206
0.0819 187.0 3179 0.0119 26.9533 18.7206
0.0819 188.0 3196 0.0120 26.9533 18.7206
0.0819 189.0 3213 0.0119 26.9533 18.7206
0.0819 190.0 3230 0.0117 26.9533 18.7206
0.0819 191.0 3247 0.0117 26.9533 18.7206
0.0819 192.0 3264 0.0117 26.9533 18.7206
0.0819 193.0 3281 0.0117 26.9533 18.7206
0.0819 194.0 3298 0.0117 26.9533 18.7206
0.0819 195.0 3315 0.0118 26.9533 18.7206
0.0819 196.0 3332 0.0118 26.9533 18.7206
0.0819 197.0 3349 0.0118 26.9533 18.7206
0.0819 198.0 3366 0.0117 26.9533 18.7206
0.0819 199.0 3383 0.0117 26.9533 18.7206
0.0819 200.0 3400 0.0117 26.9533 18.7206

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.