t5-small-finetuned-text2log-finetuned-nl-to-fol

This model is a fine-tuned version of mrm8488/t5-small-finetuned-text2log on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0267
  • Bleu: 36.0754
  • Gen Len: 18.6964

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 14 1.8310 1.6355 11.0
No log 2.0 28 1.0849 18.3378 18.8661
No log 3.0 42 0.8576 25.1889 18.7411
No log 4.0 56 0.7132 26.484 18.7589
No log 5.0 70 0.5993 26.645 18.7054
No log 6.0 84 0.5101 26.1493 18.6964
No log 7.0 98 0.4494 26.0154 18.7054
No log 8.0 112 0.4026 28.7807 18.7054
No log 9.0 126 0.3672 28.3994 18.7054
No log 10.0 140 0.3403 28.6664 18.6429
No log 11.0 154 0.3181 29.5906 18.7321
No log 12.0 168 0.3000 30.4838 18.7857
No log 13.0 182 0.2870 29.3458 18.6964
No log 14.0 196 0.2731 28.5458 18.6429
No log 15.0 210 0.2582 31.0445 18.6429
No log 16.0 224 0.2491 31.14 18.6964
No log 17.0 238 0.2367 30.9688 18.7054
No log 18.0 252 0.2262 31.2437 18.7054
No log 19.0 266 0.2206 30.6938 18.6518
No log 20.0 280 0.2137 31.1833 18.7054
No log 21.0 294 0.2043 31.1204 18.7054
No log 22.0 308 0.1978 31.9392 18.7054
No log 23.0 322 0.1915 31.9986 18.7054
No log 24.0 336 0.1850 32.4128 18.7054
No log 25.0 350 0.1789 32.2531 18.7054
No log 26.0 364 0.1716 31.5966 18.7054
No log 27.0 378 0.1670 31.4045 18.7054
No log 28.0 392 0.1631 31.6554 18.7054
No log 29.0 406 0.1575 31.6052 18.7054
No log 30.0 420 0.1530 31.6284 18.7054
No log 31.0 434 0.1500 31.6599 18.7054
No log 32.0 448 0.1449 32.2263 18.7054
No log 33.0 462 0.1409 31.7732 18.7054
No log 34.0 476 0.1385 31.6335 18.7054
No log 35.0 490 0.1323 31.5864 18.7054
0.5638 36.0 504 0.1300 31.8469 18.7054
0.5638 37.0 518 0.1294 31.571 18.6964
0.5638 38.0 532 0.1255 31.6656 18.6964
0.5638 39.0 546 0.1239 31.6699 18.6964
0.5638 40.0 560 0.1223 31.6207 18.6964
0.5638 41.0 574 0.1179 31.7496 18.6964
0.5638 42.0 588 0.1155 31.8694 18.6964
0.5638 43.0 602 0.1139 31.8661 18.6696
0.5638 44.0 616 0.1119 31.9764 18.6964
0.5638 45.0 630 0.1097 31.9264 18.6964
0.5638 46.0 644 0.1077 31.8732 18.6964
0.5638 47.0 658 0.1065 32.1597 18.6964
0.5638 48.0 672 0.1046 31.984 18.6964
0.5638 49.0 686 0.1059 32.0725 18.6964
0.5638 50.0 700 0.1009 31.9764 18.6964
0.5638 51.0 714 0.1010 31.9335 18.6964
0.5638 52.0 728 0.1007 31.9461 18.6964
0.5638 53.0 742 0.0983 32.3444 18.6964
0.5638 54.0 756 0.0948 32.2457 18.6964
0.5638 55.0 770 0.0925 32.37 18.6964
0.5638 56.0 784 0.0915 32.6063 18.6964
0.5638 57.0 798 0.0891 32.5387 18.6964
0.5638 58.0 812 0.0886 32.5844 18.6964
0.5638 59.0 826 0.0873 32.8077 18.6964
0.5638 60.0 840 0.0850 32.8999 18.6964
0.5638 61.0 854 0.0844 32.9431 18.6964
0.5638 62.0 868 0.0835 32.4755 18.6339
0.5638 63.0 882 0.0829 32.8512 18.6964
0.5638 64.0 896 0.0834 32.9652 18.6964
0.5638 65.0 910 0.0803 32.7494 18.6964
0.5638 66.0 924 0.0803 33.1091 18.6964
0.5638 67.0 938 0.0799 32.7754 18.6964
0.5638 68.0 952 0.0773 32.691 18.6964
0.5638 69.0 966 0.0766 32.6675 18.6964
0.5638 70.0 980 0.0757 32.8043 18.6964
0.5638 71.0 994 0.0747 33.0999 18.6964
0.1955 72.0 1008 0.0758 32.831 18.6964
0.1955 73.0 1022 0.0716 33.0565 18.6964
0.1955 74.0 1036 0.0720 32.9855 18.6964
0.1955 75.0 1050 0.0708 33.2507 18.6964
0.1955 76.0 1064 0.0693 33.3378 18.6964
0.1955 77.0 1078 0.0708 33.4991 18.6964
0.1955 78.0 1092 0.0680 33.6325 18.6964
0.1955 79.0 1106 0.0670 34.0041 18.6964
0.1955 80.0 1120 0.0665 33.8912 18.6964
0.1955 81.0 1134 0.0667 33.8682 18.6964
0.1955 82.0 1148 0.0669 33.9798 18.6964
0.1955 83.0 1162 0.0661 33.8137 18.6964
0.1955 84.0 1176 0.0640 34.0485 18.6964
0.1955 85.0 1190 0.0639 34.0046 18.6964
0.1955 86.0 1204 0.0628 33.9692 18.6964
0.1955 87.0 1218 0.0620 34.0327 18.6964
0.1955 88.0 1232 0.0633 33.6707 18.6964
0.1955 89.0 1246 0.0624 33.6019 18.6964
0.1955 90.0 1260 0.0602 33.7535 18.6964
0.1955 91.0 1274 0.0623 33.96 18.6964
0.1955 92.0 1288 0.0596 33.9758 18.6964
0.1955 93.0 1302 0.0575 34.0948 18.6964
0.1955 94.0 1316 0.0580 34.0769 18.6964
0.1955 95.0 1330 0.0564 34.0158 18.6964
0.1955 96.0 1344 0.0556 34.0563 18.6964
0.1955 97.0 1358 0.0554 33.9136 18.6964
0.1955 98.0 1372 0.0561 34.1803 18.6964
0.1955 99.0 1386 0.0528 34.1803 18.6964
0.1955 100.0 1400 0.0541 34.1803 18.6964
0.1955 101.0 1414 0.0586 34.2268 18.6964
0.1955 102.0 1428 0.0527 34.2268 18.6964
0.1955 103.0 1442 0.0521 34.2876 18.6964
0.1955 104.0 1456 0.0512 34.1363 18.6964
0.1955 105.0 1470 0.0505 34.1803 18.6964
0.1955 106.0 1484 0.0507 34.3964 18.6964
0.1955 107.0 1498 0.0531 34.3264 18.6964
0.1348 108.0 1512 0.0503 34.3964 18.6964
0.1348 109.0 1526 0.0479 34.2748 18.6964
0.1348 110.0 1540 0.0486 34.4116 18.6964
0.1348 111.0 1554 0.0469 34.4479 18.6964
0.1348 112.0 1568 0.0466 34.4479 18.6964
0.1348 113.0 1582 0.0459 34.6456 18.6964
0.1348 114.0 1596 0.0470 34.5772 18.6964
0.1348 115.0 1610 0.0474 34.7063 18.6964
0.1348 116.0 1624 0.0470 34.8006 18.6964
0.1348 117.0 1638 0.0446 34.8006 18.6964
0.1348 118.0 1652 0.0450 34.6814 18.6964
0.1348 119.0 1666 0.0448 34.6371 18.6964
0.1348 120.0 1680 0.0436 34.8505 18.6964
0.1348 121.0 1694 0.0436 34.8948 18.6964
0.1348 122.0 1708 0.0420 35.0312 18.6964
0.1348 123.0 1722 0.0414 35.0994 18.6964
0.1348 124.0 1736 0.0419 34.8656 18.6964
0.1348 125.0 1750 0.0410 35.3786 18.6964
0.1348 126.0 1764 0.0411 35.3786 18.6964
0.1348 127.0 1778 0.0420 35.3341 18.6964
0.1348 128.0 1792 0.0397 35.3341 18.6964
0.1348 129.0 1806 0.0391 35.3341 18.6964
0.1348 130.0 1820 0.0384 35.3341 18.6964
0.1348 131.0 1834 0.0383 35.4629 18.6964
0.1348 132.0 1848 0.0378 35.5074 18.6964
0.1348 133.0 1862 0.0371 35.5755 18.6964
0.1348 134.0 1876 0.0369 35.7042 18.6964
0.1348 135.0 1890 0.0367 35.7042 18.6964
0.1348 136.0 1904 0.0372 35.5847 18.6964
0.1348 137.0 1918 0.0364 35.8328 18.6964
0.1348 138.0 1932 0.0361 35.7881 18.6964
0.1348 139.0 1946 0.0358 35.7881 18.6964
0.1348 140.0 1960 0.0358 35.6669 18.6964
0.1348 141.0 1974 0.0365 35.7132 18.6964
0.1348 142.0 1988 0.0354 35.7648 18.6964
0.104 143.0 2002 0.0350 35.7648 18.6964
0.104 144.0 2016 0.0348 35.5989 18.6964
0.104 145.0 2030 0.0351 35.5543 18.6964
0.104 146.0 2044 0.0356 35.5543 18.6964
0.104 147.0 2058 0.0346 35.5989 18.6964
0.104 148.0 2072 0.0336 35.5989 18.6964
0.104 149.0 2086 0.0335 35.7648 18.6964
0.104 150.0 2100 0.0340 35.6669 18.6964
0.104 151.0 2114 0.0332 35.8328 18.6964
0.104 152.0 2128 0.0330 35.6669 18.6964
0.104 153.0 2142 0.0333 35.6669 18.6964
0.104 154.0 2156 0.0326 35.6669 18.6964
0.104 155.0 2170 0.0321 35.6669 18.6964
0.104 156.0 2184 0.0312 35.7274 18.6964
0.104 157.0 2198 0.0311 35.7274 18.6964
0.104 158.0 2212 0.0309 35.7737 18.6964
0.104 159.0 2226 0.0312 35.7274 18.6964
0.104 160.0 2240 0.0305 35.7274 18.6964
0.104 161.0 2254 0.0301 35.7274 18.6964
0.104 162.0 2268 0.0304 35.7274 18.6964
0.104 163.0 2282 0.0309 35.7274 18.6964
0.104 164.0 2296 0.0301 35.7274 18.6964
0.104 165.0 2310 0.0296 35.7274 18.6964
0.104 166.0 2324 0.0292 35.7274 18.6964
0.104 167.0 2338 0.0290 35.7274 18.6964
0.104 168.0 2352 0.0295 35.7737 18.6964
0.104 169.0 2366 0.0298 35.7737 18.6964
0.104 170.0 2380 0.0290 35.7737 18.6964
0.104 171.0 2394 0.0287 35.7737 18.6964
0.104 172.0 2408 0.0289 35.7737 18.6964
0.104 173.0 2422 0.0283 35.7737 18.6964
0.104 174.0 2436 0.0280 35.7737 18.6964
0.104 175.0 2450 0.0280 35.7737 18.6964
0.104 176.0 2464 0.0278 35.7737 18.6964
0.104 177.0 2478 0.0275 35.8416 18.6964
0.104 178.0 2492 0.0274 35.8416 18.6964
0.0892 179.0 2506 0.0272 35.8416 18.6964
0.0892 180.0 2520 0.0272 35.8416 18.6964
0.0892 181.0 2534 0.0275 35.8416 18.6964
0.0892 182.0 2548 0.0274 35.8416 18.6964
0.0892 183.0 2562 0.0273 35.8416 18.6964
0.0892 184.0 2576 0.0274 35.8416 18.6964
0.0892 185.0 2590 0.0275 35.8416 18.6964
0.0892 186.0 2604 0.0275 35.8416 18.6964
0.0892 187.0 2618 0.0277 35.8416 18.6964
0.0892 188.0 2632 0.0276 35.9612 18.6964
0.0892 189.0 2646 0.0271 35.9612 18.6964
0.0892 190.0 2660 0.0269 35.9612 18.6964
0.0892 191.0 2674 0.0267 35.9612 18.6964
0.0892 192.0 2688 0.0266 35.9612 18.6964
0.0892 193.0 2702 0.0265 35.9612 18.6964
0.0892 194.0 2716 0.0265 35.9612 18.6964
0.0892 195.0 2730 0.0266 36.0754 18.6964
0.0892 196.0 2744 0.0266 36.0754 18.6964
0.0892 197.0 2758 0.0267 36.0754 18.6964
0.0892 198.0 2772 0.0267 36.0754 18.6964
0.0892 199.0 2786 0.0267 36.0754 18.6964
0.0892 200.0 2800 0.0267 36.0754 18.6964

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.