reward_model / README.md
angelaupc's picture
Meta-Llama-3-8B-Instruct-rm-Anthropic-hh-rlhf-concateye
08399bc verified
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: reward_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# reward_model
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7036
- Accuracy: 0.5236
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7293 | 0.08 | 128 | 0.7252 | 0.4850 |
| 0.7412 | 0.15 | 256 | 0.6925 | 0.5386 |
| 0.7182 | 0.23 | 384 | 0.6954 | 0.5327 |
| 0.6997 | 0.3 | 512 | 0.6941 | 0.5277 |
| 0.7547 | 0.38 | 640 | 0.6959 | 0.5279 |
| 0.7123 | 0.45 | 768 | 0.6993 | 0.5252 |
| 0.7281 | 0.53 | 896 | 0.6962 | 0.5275 |
| 0.7169 | 0.6 | 1024 | 0.6986 | 0.5156 |
| 0.7244 | 0.68 | 1152 | 0.6981 | 0.5125 |
| 0.7199 | 0.75 | 1280 | 0.7000 | 0.5060 |
| 0.7311 | 0.83 | 1408 | 0.6959 | 0.5140 |
| 0.7123 | 0.9 | 1536 | 0.6956 | 0.5154 |
| 0.7344 | 0.98 | 1664 | 0.6970 | 0.5100 |
| 0.7105 | 1.05 | 1792 | 0.6933 | 0.5219 |
| 0.6947 | 1.13 | 1920 | 0.6944 | 0.5259 |
| 0.7261 | 1.21 | 2048 | 0.6960 | 0.5256 |
| 0.6997 | 1.28 | 2176 | 0.6974 | 0.5188 |
| 0.7442 | 1.36 | 2304 | 0.6960 | 0.5163 |
| 0.7004 | 1.43 | 2432 | 0.6987 | 0.5286 |
| 0.7089 | 1.51 | 2560 | 0.6982 | 0.5288 |
| 0.7142 | 1.58 | 2688 | 0.7014 | 0.5154 |
| 0.7364 | 1.66 | 2816 | 0.6997 | 0.5202 |
| 0.6915 | 1.73 | 2944 | 0.7043 | 0.5200 |
| 0.7322 | 1.81 | 3072 | 0.7037 | 0.5229 |
| 0.7524 | 1.88 | 3200 | 0.7019 | 0.5219 |
| 0.7192 | 1.96 | 3328 | 0.7036 | 0.5236 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.36.0
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.15.2