ppo-LunarLander-v2 / config.json
andradejunior's picture
Upload PPO LunarLander-v2 trained agent
bfaf91e
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f91c6ae4ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f91c6ae4d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f91c6ae4dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f91c6ae4e50>", "_build": "<function ActorCriticPolicy._build at 0x7f91c6ae4ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f91c6ae4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f91c6aea040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f91c6aea0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f91c6aea160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f91c6aea1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f91c6aea280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f91c6b62570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671500851687740235, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPrmr3jthU9yt9rPZV8Tb5GaKA9VkhzvQAAAAAAAAAA2ijkvY9aarpKfYC6/BWOtkH7hjtKUJU5AACAPwAAgD8zZje9hOPcPtGujT0vzoW+pN3eO3Nj5rwAAAAAAAAAAEDeHT4doZA/k06hPqQS9b5U7Eg+rb6uOwAAAAAAAAAAAI4bvcPlOrrYca06GyMkNtbBKTvVvMm5AACAPwAAgD/gPA8+uKaluVCuhjazA8AyAZf8OxapoLUAAIA/AACAP5pxEDzDxWO6wwdQOHfC9bFmPPq6QuFvtwAAgD8AAIA/MxQvva6tgbqkH5E6UBmFNcUwYDocbqm5AACAPwAAgD8AqqU8FUyrP/6edD4NE96+oVPCu4lJyzwAAAAAAAAAAGPbd776MF4/lfOcvUoM3b5W+nK+BrwZPgAAAAAAAAAA5vqVPXuSobqSpOm7wNZ0tjKwCjpqddw1AAAAAAAAgD+AN5w9e1qRuhbWkrmay4W2VBviuhMQ7TUAAAAAAAAAAGYyHr1IUZa6iiPDOpcGmTW5+eY6vrXhuQAAgD8AAIA/WoT7Pdaqsj7TMf69Q+q0vimcBb09oa29AAAAAAAAAADaXwW+pOscu06aNroSqmq3XkybPIpjXzkAAIA/AACAPzOhNTyP4hu6AeqPOSfEyDS2DCo7jkiquAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoTYECUhpRSlIwBbJRN6AOMAXSUR0CZc6lnh86WdX2UKGgGaAloD0MIKXef46MTZECUhpRSlGgVTegDaBZHQJl6zeEZiux1fZQoaAZoCWgPQwg3GOqwwtFmQJSGlFKUaBVN6ANoFkdAmXxguh9LH3V9lChoBmgJaA9DCETecvXjXmRAlIaUUpRoFU3oA2gWR0CZgAmzByjpdX2UKGgGaAloD0MIPfAxWHEMZ0CUhpRSlGgVTegDaBZHQJmAmX3QD3d1fZQoaAZoCWgPQwg0go3rX9xhQJSGlFKUaBVN6ANoFkdAmZ3wFs54nnV9lChoBmgJaA9DCCpWDcLcjmJAlIaUUpRoFU3oA2gWR0CZqTp84PwvdX2UKGgGaAloD0MIukxNgrfHYECUhpRSlGgVTegDaBZHQJmrUawUxmF1fZQoaAZoCWgPQwg2PL1SlkBhQJSGlFKUaBVN6ANoFkdAmauyhFmWdHV9lChoBmgJaA9DCJNVEW4ygGBAlIaUUpRoFU3oA2gWR0CZrAL9MsYmdX2UKGgGaAloD0MIz4O7s3bUYkCUhpRSlGgVTegDaBZHQJmxe3DvVmV1fZQoaAZoCWgPQwik/nqFBTVfQJSGlFKUaBVN6ANoFkdAmbSOMuOCG3V9lChoBmgJaA9DCJjaUgd5cmJAlIaUUpRoFU3oA2gWR0CZvbU/wAlwdX2UKGgGaAloD0MIgosVNZgyZUCUhpRSlGgVTegDaBZHQJm/4qwyIpJ1fZQoaAZoCWgPQwjfisQEtQZiQJSGlFKUaBVN6ANoFkdAmcH6l54W13V9lChoBmgJaA9DCK/sgsE1lGVAlIaUUpRoFU3oA2gWR0CZxaXUYsNEdX2UKGgGaAloD0MI4UT0a+twbECUhpRSlGgVTQADaBZHQJnH9AIIF/x1fZQoaAZoCWgPQwixpx3+GgdmQJSGlFKUaBVN6ANoFkdAmcoyHRCx/3V9lChoBmgJaA9DCIquCz84ZHJAlIaUUpRoFU2TAWgWR0CZzu6BAfMfdX2UKGgGaAloD0MI4s0avK9wYECUhpRSlGgVTegDaBZHQJnRM5yU9p11fZQoaAZoCWgPQwjhehSux2lkQJSGlFKUaBVN6ANoFkdAmdKCXt0FKXV9lChoBmgJaA9DCJWAmISLFWdAlIaUUpRoFU3oA2gWR0CZ1dzd1uBMdX2UKGgGaAloD0MIFsH/VnKmcUCUhpRSlGgVTU8CaBZHQJnX+UILPUt1fZQoaAZoCWgPQwilarsJviNhQJSGlFKUaBVN6ANoFkdAmfiv029+PXV9lChoBmgJaA9DCF4td2YC6WZAlIaUUpRoFU3oA2gWR0CaAwKQq7ROdX2UKGgGaAloD0MIUaG6uXi0Y0CUhpRSlGgVTegDaBZHQJoE2Vs1sLx1fZQoaAZoCWgPQwhxcr9DUfljQJSGlFKUaBVN6ANoFkdAmgUoJu2qk3V9lChoBmgJaA9DCCZUcHhBlWJAlIaUUpRoFU3oA2gWR0CaBWo4MnZ1dX2UKGgGaAloD0MIiEm4kMeVYUCUhpRSlGgVTegDaBZHQJoWFbC79Q51fZQoaAZoCWgPQwhnJhjONfVjQJSGlFKUaBVN6ANoFkdAmhg+erdWQ3V9lChoBmgJaA9DCDxO0ZFc9GdAlIaUUpRoFU3oA2gWR0CaGiRcu8K5dX2UKGgGaAloD0MIj6uRXWleY0CUhpRSlGgVTegDaBZHQJodZ6KLsKN1fZQoaAZoCWgPQwjMQdDRKgJhQJSGlFKUaBVN6ANoFkdAmh9F54W1t3V9lChoBmgJaA9DCP4Mb9Zg2GNAlIaUUpRoFU3oA2gWR0CaISRv3rUtdX2UKGgGaAloD0MIKjkn9lBfZUCUhpRSlGgVTegDaBZHQJok4aXKKYR1fZQoaAZoCWgPQwhgdk8elh9vQJSGlFKUaBVNWgJoFkdAmiZS5Zr57HV9lChoBmgJaA9DCBSSzOoduWJAlIaUUpRoFU3oA2gWR0CaJqOWjXWfdX2UKGgGaAloD0MIRpT2Bl/2TUCUhpRSlGgVS8ZoFkdAmidyJKraNHV9lChoBmgJaA9DCMLZrWWyJWRAlIaUUpRoFU3oA2gWR0CaJ6pnpSrHdX2UKGgGaAloD0MIxFxStd1TYECUhpRSlGgVTegDaBZHQJoqBZA6dUd1fZQoaAZoCWgPQwhtHofB/DhkQJSGlFKUaBVN6ANoFkdAmitHAdn003V9lChoBmgJaA9DCOGZ0CSx+mVAlIaUUpRoFU3oA2gWR0CaRXP2PDHfdX2UKGgGaAloD0MIAANBgAzqYUCUhpRSlGgVTegDaBZHQJpRlsTFl051fZQoaAZoCWgPQwgF3PP8aQFhQJSGlFKUaBVN6ANoFkdAmlHq8xsVL3V9lChoBmgJaA9DCNukorH2AGVAlIaUUpRoFU3oA2gWR0CaUjGFzuF6dX2UKGgGaAloD0MI+tAF9a2UaECUhpRSlGgVTegDaBZHQJpjyLGaQV91fZQoaAZoCWgPQwhQxvgwe6BxQJSGlFKUaBVNJQFoFkdAmmSlF6RhdHV9lChoBmgJaA9DCK9amfBL4mRAlIaUUpRoFU3oA2gWR0CaZeAi3XqadX2UKGgGaAloD0MIAIv8+iF0Y0CUhpRSlGgVTegDaBZHQJpnqLpA2Q51fZQoaAZoCWgPQwj5nSYz3oxhQJSGlFKUaBVN6ANoFkdAmmzlzySV4XV9lChoBmgJaA9DCFZ/hGFATGZAlIaUUpRoFU3oA2gWR0CabrOARTS9dX2UKGgGaAloD0MIrTWU2gsvckCUhpRSlGgVTW0DaBZHQJpu9IGyHEd1fZQoaAZoCWgPQwjmr5C5MrhkQJSGlFKUaBVN6ANoFkdAmnJrPIGQjnV9lChoBmgJaA9DCIBHVKju1GRAlIaUUpRoFU3oA2gWR0Cac+f+CK77dX2UKGgGaAloD0MI2Ls/3qswZECUhpRSlGgVTegDaBZHQJp0OgxrSE11fZQoaAZoCWgPQwjrp/+s+cdjQJSGlFKUaBVN6ANoFkdAmnVW0mdAgXV9lChoBmgJaA9DCOrsZHAUrmJAlIaUUpRoFU3oA2gWR0CaeBgQpWmxdX2UKGgGaAloD0MIwQKYMnCVYUCUhpRSlGgVTegDaBZHQJp5anVG0/p1fZQoaAZoCWgPQwiTkEjbONRwQJSGlFKUaBVNpAFoFkdAmnuczQ/oq3V9lChoBmgJaA9DCAvVzcXfwGBAlIaUUpRoFU3oA2gWR0Cak2r+o99udX2UKGgGaAloD0MIVyWRfRCocUCUhpRSlGgVTTQCaBZHQJqdtsfq5b11fZQoaAZoCWgPQwhUqdkDrQxjQJSGlFKUaBVN6ANoFkdAmp4LwazeGnV9lChoBmgJaA9DCI1hTtCmV2ZAlIaUUpRoFU3oA2gWR0Cankoa1kUcdX2UKGgGaAloD0MIdv7tsl9YcUCUhpRSlGgVTdYBaBZHQJqekr3Cbc51fZQoaAZoCWgPQwifWKfKd3psQJSGlFKUaBVNTAJoFkdAmqgJNoJzDHV9lChoBmgJaA9DCCDT2jQ2+WJAlIaUUpRoFU3oA2gWR0CarTso2GZedX2UKGgGaAloD0MIgO7LmW2cYUCUhpRSlGgVTegDaBZHQJquEO6NEPV1fZQoaAZoCWgPQwjQZP88jSNgQJSGlFKUaBVN6ANoFkdAmrEK3RXwLHV9lChoBmgJaA9DCDBl4IAWnWdAlIaUUpRoFU3oA2gWR0CauI1mapgkdX2UKGgGaAloD0MIAKlNnNy7ZkCUhpRSlGgVTegDaBZHQJq42weNkvt1fZQoaAZoCWgPQwjkgjP4+2U9QJSGlFKUaBVLvGgWR0CavFW/rSmZdX2UKGgGaAloD0MIKeeLvZdcYUCUhpRSlGgVTegDaBZHQJq+5Qzk6tF1fZQoaAZoCWgPQwiJtmPqrpNoQJSGlFKUaBVN6ANoFkdAmr9IbbUPQXV9lChoBmgJaA9DCElkH2TZWmZAlIaUUpRoFU3oA2gWR0Caw9Zn+Q2ddX2UKGgGaAloD0MIhbAaS1g1Z0CUhpRSlGgVTegDaBZHQJrFbsolUqB1fZQoaAZoCWgPQwi/mC1ZFT1hQJSGlFKUaBVN6ANoFkdAmsgZ84Pwu3V9lChoBmgJaA9DCExV2uKamWZAlIaUUpRoFU3oA2gWR0CazKrVvuPWdX2UKGgGaAloD0MIM1LvqdxmcECUhpRSlGgVTVADaBZHQJriGBH09Qp1fZQoaAZoCWgPQwhs6jwqfvBhQJSGlFKUaBVN6ANoFkdAmusJtNzr/3V9lChoBmgJaA9DCP5EZcMajmFAlIaUUpRoFU3oA2gWR0Ca60YXwb2ldX2UKGgGaAloD0MIGmt/Z3vZZkCUhpRSlGgVTegDaBZHQJrrlas6q811fZQoaAZoCWgPQwhXlX1XBNJkQJSGlFKUaBVN6ANoFkdAmvTUKArhBXV9lChoBmgJaA9DCKm9iLZj8mJAlIaUUpRoFU3oA2gWR0Ca+an/1g6VdX2UKGgGaAloD0MIVkYjn1eVY0CUhpRSlGgVTegDaBZHQJr6U3VCojx1fZQoaAZoCWgPQwh4DmWoCohwQJSGlFKUaBVNRANoFkdAmvtCzHCGe3V9lChoBmgJaA9DCKUtrvEZd3FAlIaUUpRoFU1/AmgWR0Ca++mvW6K+dX2UKGgGaAloD0MI5bM8D67gcECUhpRSlGgVTVkBaBZHQJr9De3x4IN1fZQoaAZoCWgPQwhZiXlWkpVwQJSGlFKUaBVNrgNoFkdAmv/JSiudPXV9lChoBmgJaA9DCHfc8Ltpfm9AlIaUUpRoFU3RAWgWR0CbApo6jnFHdX2UKGgGaAloD0MI5dAi2/loR0CUhpRSlGgVS9poFkdAmwRLYf4h2XV9lChoBmgJaA9DCLjKEwg7NGNAlIaUUpRoFU3oA2gWR0CbBTUpNKywdX2UKGgGaAloD0MI6nb2lQfzQECUhpRSlGgVS+RoFkdAmwYXAM2FWXV9lChoBmgJaA9DCBqH+l1YxmBAlIaUUpRoFU3oA2gWR0CbBwyhBZ6ldX2UKGgGaAloD0MIw2LUtfbFY0CUhpRSlGgVTegDaBZHQJsHXKq4pc51fZQoaAZoCWgPQwhfJoqQOpZlQJSGlFKUaBVN6ANoFkdAmwrRUR3/xXV9lChoBmgJaA9DCAPrOH6oTkxAlIaUUpRoFUu/aBZHQJsN4sg+yJN1fZQoaAZoCWgPQwizRGeZxThnQJSGlFKUaBVN6ANoFkdAmw5kv4/NaHV9lChoBmgJaA9DCOt0IOspnG9AlIaUUpRoFU0+AWgWR0CbEXslb/wRdX2UKGgGaAloD0MIUU60qxBdZECUhpRSlGgVTegDaBZHQJsSn8uSOip1fZQoaAZoCWgPQwg42QbuQItiQJSGlFKUaBVN6ANoFkdAmxRCmALApXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}