andradejunior commited on
Commit
bfaf91e
·
1 Parent(s): 201b072

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 244.51 +/- 39.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f91c6ae4ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f91c6ae4d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f91c6ae4dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f91c6ae4e50>", "_build": "<function ActorCriticPolicy._build at 0x7f91c6ae4ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f91c6ae4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f91c6aea040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f91c6aea0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f91c6aea160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f91c6aea1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f91c6aea280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f91c6b62570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671500851687740235, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPrmr3jthU9yt9rPZV8Tb5GaKA9VkhzvQAAAAAAAAAA2ijkvY9aarpKfYC6/BWOtkH7hjtKUJU5AACAPwAAgD8zZje9hOPcPtGujT0vzoW+pN3eO3Nj5rwAAAAAAAAAAEDeHT4doZA/k06hPqQS9b5U7Eg+rb6uOwAAAAAAAAAAAI4bvcPlOrrYca06GyMkNtbBKTvVvMm5AACAPwAAgD/gPA8+uKaluVCuhjazA8AyAZf8OxapoLUAAIA/AACAP5pxEDzDxWO6wwdQOHfC9bFmPPq6QuFvtwAAgD8AAIA/MxQvva6tgbqkH5E6UBmFNcUwYDocbqm5AACAPwAAgD8AqqU8FUyrP/6edD4NE96+oVPCu4lJyzwAAAAAAAAAAGPbd776MF4/lfOcvUoM3b5W+nK+BrwZPgAAAAAAAAAA5vqVPXuSobqSpOm7wNZ0tjKwCjpqddw1AAAAAAAAgD+AN5w9e1qRuhbWkrmay4W2VBviuhMQ7TUAAAAAAAAAAGYyHr1IUZa6iiPDOpcGmTW5+eY6vrXhuQAAgD8AAIA/WoT7Pdaqsj7TMf69Q+q0vimcBb09oa29AAAAAAAAAADaXwW+pOscu06aNroSqmq3XkybPIpjXzkAAIA/AACAPzOhNTyP4hu6AeqPOSfEyDS2DCo7jkiquAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoTYECUhpRSlIwBbJRN6AOMAXSUR0CZc6lnh86WdX2UKGgGaAloD0MIKXef46MTZECUhpRSlGgVTegDaBZHQJl6zeEZiux1fZQoaAZoCWgPQwg3GOqwwtFmQJSGlFKUaBVN6ANoFkdAmXxguh9LH3V9lChoBmgJaA9DCETecvXjXmRAlIaUUpRoFU3oA2gWR0CZgAmzByjpdX2UKGgGaAloD0MIPfAxWHEMZ0CUhpRSlGgVTegDaBZHQJmAmX3QD3d1fZQoaAZoCWgPQwg0go3rX9xhQJSGlFKUaBVN6ANoFkdAmZ3wFs54nnV9lChoBmgJaA9DCCpWDcLcjmJAlIaUUpRoFU3oA2gWR0CZqTp84PwvdX2UKGgGaAloD0MIukxNgrfHYECUhpRSlGgVTegDaBZHQJmrUawUxmF1fZQoaAZoCWgPQwg2PL1SlkBhQJSGlFKUaBVN6ANoFkdAmauyhFmWdHV9lChoBmgJaA9DCJNVEW4ygGBAlIaUUpRoFU3oA2gWR0CZrAL9MsYmdX2UKGgGaAloD0MIz4O7s3bUYkCUhpRSlGgVTegDaBZHQJmxe3DvVmV1fZQoaAZoCWgPQwik/nqFBTVfQJSGlFKUaBVN6ANoFkdAmbSOMuOCG3V9lChoBmgJaA9DCJjaUgd5cmJAlIaUUpRoFU3oA2gWR0CZvbU/wAlwdX2UKGgGaAloD0MIgosVNZgyZUCUhpRSlGgVTegDaBZHQJm/4qwyIpJ1fZQoaAZoCWgPQwjfisQEtQZiQJSGlFKUaBVN6ANoFkdAmcH6l54W13V9lChoBmgJaA9DCK/sgsE1lGVAlIaUUpRoFU3oA2gWR0CZxaXUYsNEdX2UKGgGaAloD0MI4UT0a+twbECUhpRSlGgVTQADaBZHQJnH9AIIF/x1fZQoaAZoCWgPQwixpx3+GgdmQJSGlFKUaBVN6ANoFkdAmcoyHRCx/3V9lChoBmgJaA9DCIquCz84ZHJAlIaUUpRoFU2TAWgWR0CZzu6BAfMfdX2UKGgGaAloD0MI4s0avK9wYECUhpRSlGgVTegDaBZHQJnRM5yU9p11fZQoaAZoCWgPQwjhehSux2lkQJSGlFKUaBVN6ANoFkdAmdKCXt0FKXV9lChoBmgJaA9DCJWAmISLFWdAlIaUUpRoFU3oA2gWR0CZ1dzd1uBMdX2UKGgGaAloD0MIFsH/VnKmcUCUhpRSlGgVTU8CaBZHQJnX+UILPUt1fZQoaAZoCWgPQwilarsJviNhQJSGlFKUaBVN6ANoFkdAmfiv029+PXV9lChoBmgJaA9DCF4td2YC6WZAlIaUUpRoFU3oA2gWR0CaAwKQq7ROdX2UKGgGaAloD0MIUaG6uXi0Y0CUhpRSlGgVTegDaBZHQJoE2Vs1sLx1fZQoaAZoCWgPQwhxcr9DUfljQJSGlFKUaBVN6ANoFkdAmgUoJu2qk3V9lChoBmgJaA9DCCZUcHhBlWJAlIaUUpRoFU3oA2gWR0CaBWo4MnZ1dX2UKGgGaAloD0MIiEm4kMeVYUCUhpRSlGgVTegDaBZHQJoWFbC79Q51fZQoaAZoCWgPQwhnJhjONfVjQJSGlFKUaBVN6ANoFkdAmhg+erdWQ3V9lChoBmgJaA9DCDxO0ZFc9GdAlIaUUpRoFU3oA2gWR0CaGiRcu8K5dX2UKGgGaAloD0MIj6uRXWleY0CUhpRSlGgVTegDaBZHQJodZ6KLsKN1fZQoaAZoCWgPQwjMQdDRKgJhQJSGlFKUaBVN6ANoFkdAmh9F54W1t3V9lChoBmgJaA9DCP4Mb9Zg2GNAlIaUUpRoFU3oA2gWR0CaISRv3rUtdX2UKGgGaAloD0MIKjkn9lBfZUCUhpRSlGgVTegDaBZHQJok4aXKKYR1fZQoaAZoCWgPQwhgdk8elh9vQJSGlFKUaBVNWgJoFkdAmiZS5Zr57HV9lChoBmgJaA9DCBSSzOoduWJAlIaUUpRoFU3oA2gWR0CaJqOWjXWfdX2UKGgGaAloD0MIRpT2Bl/2TUCUhpRSlGgVS8ZoFkdAmidyJKraNHV9lChoBmgJaA9DCMLZrWWyJWRAlIaUUpRoFU3oA2gWR0CaJ6pnpSrHdX2UKGgGaAloD0MIxFxStd1TYECUhpRSlGgVTegDaBZHQJoqBZA6dUd1fZQoaAZoCWgPQwhtHofB/DhkQJSGlFKUaBVN6ANoFkdAmitHAdn003V9lChoBmgJaA9DCOGZ0CSx+mVAlIaUUpRoFU3oA2gWR0CaRXP2PDHfdX2UKGgGaAloD0MIAANBgAzqYUCUhpRSlGgVTegDaBZHQJpRlsTFl051fZQoaAZoCWgPQwgF3PP8aQFhQJSGlFKUaBVN6ANoFkdAmlHq8xsVL3V9lChoBmgJaA9DCNukorH2AGVAlIaUUpRoFU3oA2gWR0CaUjGFzuF6dX2UKGgGaAloD0MI+tAF9a2UaECUhpRSlGgVTegDaBZHQJpjyLGaQV91fZQoaAZoCWgPQwhQxvgwe6BxQJSGlFKUaBVNJQFoFkdAmmSlF6RhdHV9lChoBmgJaA9DCK9amfBL4mRAlIaUUpRoFU3oA2gWR0CaZeAi3XqadX2UKGgGaAloD0MIAIv8+iF0Y0CUhpRSlGgVTegDaBZHQJpnqLpA2Q51fZQoaAZoCWgPQwj5nSYz3oxhQJSGlFKUaBVN6ANoFkdAmmzlzySV4XV9lChoBmgJaA9DCFZ/hGFATGZAlIaUUpRoFU3oA2gWR0CabrOARTS9dX2UKGgGaAloD0MIrTWU2gsvckCUhpRSlGgVTW0DaBZHQJpu9IGyHEd1fZQoaAZoCWgPQwjmr5C5MrhkQJSGlFKUaBVN6ANoFkdAmnJrPIGQjnV9lChoBmgJaA9DCIBHVKju1GRAlIaUUpRoFU3oA2gWR0Cac+f+CK77dX2UKGgGaAloD0MI2Ls/3qswZECUhpRSlGgVTegDaBZHQJp0OgxrSE11fZQoaAZoCWgPQwjrp/+s+cdjQJSGlFKUaBVN6ANoFkdAmnVW0mdAgXV9lChoBmgJaA9DCOrsZHAUrmJAlIaUUpRoFU3oA2gWR0CaeBgQpWmxdX2UKGgGaAloD0MIwQKYMnCVYUCUhpRSlGgVTegDaBZHQJp5anVG0/p1fZQoaAZoCWgPQwiTkEjbONRwQJSGlFKUaBVNpAFoFkdAmnuczQ/oq3V9lChoBmgJaA9DCAvVzcXfwGBAlIaUUpRoFU3oA2gWR0Cak2r+o99udX2UKGgGaAloD0MIVyWRfRCocUCUhpRSlGgVTTQCaBZHQJqdtsfq5b11fZQoaAZoCWgPQwhUqdkDrQxjQJSGlFKUaBVN6ANoFkdAmp4LwazeGnV9lChoBmgJaA9DCI1hTtCmV2ZAlIaUUpRoFU3oA2gWR0Cankoa1kUcdX2UKGgGaAloD0MIdv7tsl9YcUCUhpRSlGgVTdYBaBZHQJqekr3Cbc51fZQoaAZoCWgPQwifWKfKd3psQJSGlFKUaBVNTAJoFkdAmqgJNoJzDHV9lChoBmgJaA9DCCDT2jQ2+WJAlIaUUpRoFU3oA2gWR0CarTso2GZedX2UKGgGaAloD0MIgO7LmW2cYUCUhpRSlGgVTegDaBZHQJquEO6NEPV1fZQoaAZoCWgPQwjQZP88jSNgQJSGlFKUaBVN6ANoFkdAmrEK3RXwLHV9lChoBmgJaA9DCDBl4IAWnWdAlIaUUpRoFU3oA2gWR0CauI1mapgkdX2UKGgGaAloD0MIAKlNnNy7ZkCUhpRSlGgVTegDaBZHQJq42weNkvt1fZQoaAZoCWgPQwjkgjP4+2U9QJSGlFKUaBVLvGgWR0CavFW/rSmZdX2UKGgGaAloD0MIKeeLvZdcYUCUhpRSlGgVTegDaBZHQJq+5Qzk6tF1fZQoaAZoCWgPQwiJtmPqrpNoQJSGlFKUaBVN6ANoFkdAmr9IbbUPQXV9lChoBmgJaA9DCElkH2TZWmZAlIaUUpRoFU3oA2gWR0Caw9Zn+Q2ddX2UKGgGaAloD0MIhbAaS1g1Z0CUhpRSlGgVTegDaBZHQJrFbsolUqB1fZQoaAZoCWgPQwi/mC1ZFT1hQJSGlFKUaBVN6ANoFkdAmsgZ84Pwu3V9lChoBmgJaA9DCExV2uKamWZAlIaUUpRoFU3oA2gWR0CazKrVvuPWdX2UKGgGaAloD0MIM1LvqdxmcECUhpRSlGgVTVADaBZHQJriGBH09Qp1fZQoaAZoCWgPQwhs6jwqfvBhQJSGlFKUaBVN6ANoFkdAmusJtNzr/3V9lChoBmgJaA9DCP5EZcMajmFAlIaUUpRoFU3oA2gWR0Ca60YXwb2ldX2UKGgGaAloD0MIGmt/Z3vZZkCUhpRSlGgVTegDaBZHQJrrlas6q811fZQoaAZoCWgPQwhXlX1XBNJkQJSGlFKUaBVN6ANoFkdAmvTUKArhBXV9lChoBmgJaA9DCKm9iLZj8mJAlIaUUpRoFU3oA2gWR0Ca+an/1g6VdX2UKGgGaAloD0MIVkYjn1eVY0CUhpRSlGgVTegDaBZHQJr6U3VCojx1fZQoaAZoCWgPQwh4DmWoCohwQJSGlFKUaBVNRANoFkdAmvtCzHCGe3V9lChoBmgJaA9DCKUtrvEZd3FAlIaUUpRoFU1/AmgWR0Ca++mvW6K+dX2UKGgGaAloD0MI5bM8D67gcECUhpRSlGgVTVkBaBZHQJr9De3x4IN1fZQoaAZoCWgPQwhZiXlWkpVwQJSGlFKUaBVNrgNoFkdAmv/JSiudPXV9lChoBmgJaA9DCHfc8Ltpfm9AlIaUUpRoFU3RAWgWR0CbApo6jnFHdX2UKGgGaAloD0MI5dAi2/loR0CUhpRSlGgVS9poFkdAmwRLYf4h2XV9lChoBmgJaA9DCLjKEwg7NGNAlIaUUpRoFU3oA2gWR0CbBTUpNKywdX2UKGgGaAloD0MI6nb2lQfzQECUhpRSlGgVS+RoFkdAmwYXAM2FWXV9lChoBmgJaA9DCBqH+l1YxmBAlIaUUpRoFU3oA2gWR0CbBwyhBZ6ldX2UKGgGaAloD0MIw2LUtfbFY0CUhpRSlGgVTegDaBZHQJsHXKq4pc51fZQoaAZoCWgPQwhfJoqQOpZlQJSGlFKUaBVN6ANoFkdAmwrRUR3/xXV9lChoBmgJaA9DCAPrOH6oTkxAlIaUUpRoFUu/aBZHQJsN4sg+yJN1fZQoaAZoCWgPQwizRGeZxThnQJSGlFKUaBVN6ANoFkdAmw5kv4/NaHV9lChoBmgJaA9DCOt0IOspnG9AlIaUUpRoFU0+AWgWR0CbEXslb/wRdX2UKGgGaAloD0MIUU60qxBdZECUhpRSlGgVTegDaBZHQJsSn8uSOip1fZQoaAZoCWgPQwg42QbuQItiQJSGlFKUaBVN6ANoFkdAmxRCmALApXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-V2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a25ecd0d13617c8c5321b1971426433800bb9459346e5a463149fb40465258c5
3
+ size 147214
ppo-LunarLander-V2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-V2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f91c6ae4ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f91c6ae4d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f91c6ae4dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f91c6ae4e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f91c6ae4ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f91c6ae4f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f91c6aea040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f91c6aea0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f91c6aea160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f91c6aea1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f91c6aea280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f91c6b62570>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671500851687740235,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPrmr3jthU9yt9rPZV8Tb5GaKA9VkhzvQAAAAAAAAAA2ijkvY9aarpKfYC6/BWOtkH7hjtKUJU5AACAPwAAgD8zZje9hOPcPtGujT0vzoW+pN3eO3Nj5rwAAAAAAAAAAEDeHT4doZA/k06hPqQS9b5U7Eg+rb6uOwAAAAAAAAAAAI4bvcPlOrrYca06GyMkNtbBKTvVvMm5AACAPwAAgD/gPA8+uKaluVCuhjazA8AyAZf8OxapoLUAAIA/AACAP5pxEDzDxWO6wwdQOHfC9bFmPPq6QuFvtwAAgD8AAIA/MxQvva6tgbqkH5E6UBmFNcUwYDocbqm5AACAPwAAgD8AqqU8FUyrP/6edD4NE96+oVPCu4lJyzwAAAAAAAAAAGPbd776MF4/lfOcvUoM3b5W+nK+BrwZPgAAAAAAAAAA5vqVPXuSobqSpOm7wNZ0tjKwCjpqddw1AAAAAAAAgD+AN5w9e1qRuhbWkrmay4W2VBviuhMQ7TUAAAAAAAAAAGYyHr1IUZa6iiPDOpcGmTW5+eY6vrXhuQAAgD8AAIA/WoT7Pdaqsj7TMf69Q+q0vimcBb09oa29AAAAAAAAAADaXwW+pOscu06aNroSqmq3XkybPIpjXzkAAIA/AACAPzOhNTyP4hu6AeqPOSfEyDS2DCo7jkiquAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoTYECUhpRSlIwBbJRN6AOMAXSUR0CZc6lnh86WdX2UKGgGaAloD0MIKXef46MTZECUhpRSlGgVTegDaBZHQJl6zeEZiux1fZQoaAZoCWgPQwg3GOqwwtFmQJSGlFKUaBVN6ANoFkdAmXxguh9LH3V9lChoBmgJaA9DCETecvXjXmRAlIaUUpRoFU3oA2gWR0CZgAmzByjpdX2UKGgGaAloD0MIPfAxWHEMZ0CUhpRSlGgVTegDaBZHQJmAmX3QD3d1fZQoaAZoCWgPQwg0go3rX9xhQJSGlFKUaBVN6ANoFkdAmZ3wFs54nnV9lChoBmgJaA9DCCpWDcLcjmJAlIaUUpRoFU3oA2gWR0CZqTp84PwvdX2UKGgGaAloD0MIukxNgrfHYECUhpRSlGgVTegDaBZHQJmrUawUxmF1fZQoaAZoCWgPQwg2PL1SlkBhQJSGlFKUaBVN6ANoFkdAmauyhFmWdHV9lChoBmgJaA9DCJNVEW4ygGBAlIaUUpRoFU3oA2gWR0CZrAL9MsYmdX2UKGgGaAloD0MIz4O7s3bUYkCUhpRSlGgVTegDaBZHQJmxe3DvVmV1fZQoaAZoCWgPQwik/nqFBTVfQJSGlFKUaBVN6ANoFkdAmbSOMuOCG3V9lChoBmgJaA9DCJjaUgd5cmJAlIaUUpRoFU3oA2gWR0CZvbU/wAlwdX2UKGgGaAloD0MIgosVNZgyZUCUhpRSlGgVTegDaBZHQJm/4qwyIpJ1fZQoaAZoCWgPQwjfisQEtQZiQJSGlFKUaBVN6ANoFkdAmcH6l54W13V9lChoBmgJaA9DCK/sgsE1lGVAlIaUUpRoFU3oA2gWR0CZxaXUYsNEdX2UKGgGaAloD0MI4UT0a+twbECUhpRSlGgVTQADaBZHQJnH9AIIF/x1fZQoaAZoCWgPQwixpx3+GgdmQJSGlFKUaBVN6ANoFkdAmcoyHRCx/3V9lChoBmgJaA9DCIquCz84ZHJAlIaUUpRoFU2TAWgWR0CZzu6BAfMfdX2UKGgGaAloD0MI4s0avK9wYECUhpRSlGgVTegDaBZHQJnRM5yU9p11fZQoaAZoCWgPQwjhehSux2lkQJSGlFKUaBVN6ANoFkdAmdKCXt0FKXV9lChoBmgJaA9DCJWAmISLFWdAlIaUUpRoFU3oA2gWR0CZ1dzd1uBMdX2UKGgGaAloD0MIFsH/VnKmcUCUhpRSlGgVTU8CaBZHQJnX+UILPUt1fZQoaAZoCWgPQwilarsJviNhQJSGlFKUaBVN6ANoFkdAmfiv029+PXV9lChoBmgJaA9DCF4td2YC6WZAlIaUUpRoFU3oA2gWR0CaAwKQq7ROdX2UKGgGaAloD0MIUaG6uXi0Y0CUhpRSlGgVTegDaBZHQJoE2Vs1sLx1fZQoaAZoCWgPQwhxcr9DUfljQJSGlFKUaBVN6ANoFkdAmgUoJu2qk3V9lChoBmgJaA9DCCZUcHhBlWJAlIaUUpRoFU3oA2gWR0CaBWo4MnZ1dX2UKGgGaAloD0MIiEm4kMeVYUCUhpRSlGgVTegDaBZHQJoWFbC79Q51fZQoaAZoCWgPQwhnJhjONfVjQJSGlFKUaBVN6ANoFkdAmhg+erdWQ3V9lChoBmgJaA9DCDxO0ZFc9GdAlIaUUpRoFU3oA2gWR0CaGiRcu8K5dX2UKGgGaAloD0MIj6uRXWleY0CUhpRSlGgVTegDaBZHQJodZ6KLsKN1fZQoaAZoCWgPQwjMQdDRKgJhQJSGlFKUaBVN6ANoFkdAmh9F54W1t3V9lChoBmgJaA9DCP4Mb9Zg2GNAlIaUUpRoFU3oA2gWR0CaISRv3rUtdX2UKGgGaAloD0MIKjkn9lBfZUCUhpRSlGgVTegDaBZHQJok4aXKKYR1fZQoaAZoCWgPQwhgdk8elh9vQJSGlFKUaBVNWgJoFkdAmiZS5Zr57HV9lChoBmgJaA9DCBSSzOoduWJAlIaUUpRoFU3oA2gWR0CaJqOWjXWfdX2UKGgGaAloD0MIRpT2Bl/2TUCUhpRSlGgVS8ZoFkdAmidyJKraNHV9lChoBmgJaA9DCMLZrWWyJWRAlIaUUpRoFU3oA2gWR0CaJ6pnpSrHdX2UKGgGaAloD0MIxFxStd1TYECUhpRSlGgVTegDaBZHQJoqBZA6dUd1fZQoaAZoCWgPQwhtHofB/DhkQJSGlFKUaBVN6ANoFkdAmitHAdn003V9lChoBmgJaA9DCOGZ0CSx+mVAlIaUUpRoFU3oA2gWR0CaRXP2PDHfdX2UKGgGaAloD0MIAANBgAzqYUCUhpRSlGgVTegDaBZHQJpRlsTFl051fZQoaAZoCWgPQwgF3PP8aQFhQJSGlFKUaBVN6ANoFkdAmlHq8xsVL3V9lChoBmgJaA9DCNukorH2AGVAlIaUUpRoFU3oA2gWR0CaUjGFzuF6dX2UKGgGaAloD0MI+tAF9a2UaECUhpRSlGgVTegDaBZHQJpjyLGaQV91fZQoaAZoCWgPQwhQxvgwe6BxQJSGlFKUaBVNJQFoFkdAmmSlF6RhdHV9lChoBmgJaA9DCK9amfBL4mRAlIaUUpRoFU3oA2gWR0CaZeAi3XqadX2UKGgGaAloD0MIAIv8+iF0Y0CUhpRSlGgVTegDaBZHQJpnqLpA2Q51fZQoaAZoCWgPQwj5nSYz3oxhQJSGlFKUaBVN6ANoFkdAmmzlzySV4XV9lChoBmgJaA9DCFZ/hGFATGZAlIaUUpRoFU3oA2gWR0CabrOARTS9dX2UKGgGaAloD0MIrTWU2gsvckCUhpRSlGgVTW0DaBZHQJpu9IGyHEd1fZQoaAZoCWgPQwjmr5C5MrhkQJSGlFKUaBVN6ANoFkdAmnJrPIGQjnV9lChoBmgJaA9DCIBHVKju1GRAlIaUUpRoFU3oA2gWR0Cac+f+CK77dX2UKGgGaAloD0MI2Ls/3qswZECUhpRSlGgVTegDaBZHQJp0OgxrSE11fZQoaAZoCWgPQwjrp/+s+cdjQJSGlFKUaBVN6ANoFkdAmnVW0mdAgXV9lChoBmgJaA9DCOrsZHAUrmJAlIaUUpRoFU3oA2gWR0CaeBgQpWmxdX2UKGgGaAloD0MIwQKYMnCVYUCUhpRSlGgVTegDaBZHQJp5anVG0/p1fZQoaAZoCWgPQwiTkEjbONRwQJSGlFKUaBVNpAFoFkdAmnuczQ/oq3V9lChoBmgJaA9DCAvVzcXfwGBAlIaUUpRoFU3oA2gWR0Cak2r+o99udX2UKGgGaAloD0MIVyWRfRCocUCUhpRSlGgVTTQCaBZHQJqdtsfq5b11fZQoaAZoCWgPQwhUqdkDrQxjQJSGlFKUaBVN6ANoFkdAmp4LwazeGnV9lChoBmgJaA9DCI1hTtCmV2ZAlIaUUpRoFU3oA2gWR0Cankoa1kUcdX2UKGgGaAloD0MIdv7tsl9YcUCUhpRSlGgVTdYBaBZHQJqekr3Cbc51fZQoaAZoCWgPQwifWKfKd3psQJSGlFKUaBVNTAJoFkdAmqgJNoJzDHV9lChoBmgJaA9DCCDT2jQ2+WJAlIaUUpRoFU3oA2gWR0CarTso2GZedX2UKGgGaAloD0MIgO7LmW2cYUCUhpRSlGgVTegDaBZHQJquEO6NEPV1fZQoaAZoCWgPQwjQZP88jSNgQJSGlFKUaBVN6ANoFkdAmrEK3RXwLHV9lChoBmgJaA9DCDBl4IAWnWdAlIaUUpRoFU3oA2gWR0CauI1mapgkdX2UKGgGaAloD0MIAKlNnNy7ZkCUhpRSlGgVTegDaBZHQJq42weNkvt1fZQoaAZoCWgPQwjkgjP4+2U9QJSGlFKUaBVLvGgWR0CavFW/rSmZdX2UKGgGaAloD0MIKeeLvZdcYUCUhpRSlGgVTegDaBZHQJq+5Qzk6tF1fZQoaAZoCWgPQwiJtmPqrpNoQJSGlFKUaBVN6ANoFkdAmr9IbbUPQXV9lChoBmgJaA9DCElkH2TZWmZAlIaUUpRoFU3oA2gWR0Caw9Zn+Q2ddX2UKGgGaAloD0MIhbAaS1g1Z0CUhpRSlGgVTegDaBZHQJrFbsolUqB1fZQoaAZoCWgPQwi/mC1ZFT1hQJSGlFKUaBVN6ANoFkdAmsgZ84Pwu3V9lChoBmgJaA9DCExV2uKamWZAlIaUUpRoFU3oA2gWR0CazKrVvuPWdX2UKGgGaAloD0MIM1LvqdxmcECUhpRSlGgVTVADaBZHQJriGBH09Qp1fZQoaAZoCWgPQwhs6jwqfvBhQJSGlFKUaBVN6ANoFkdAmusJtNzr/3V9lChoBmgJaA9DCP5EZcMajmFAlIaUUpRoFU3oA2gWR0Ca60YXwb2ldX2UKGgGaAloD0MIGmt/Z3vZZkCUhpRSlGgVTegDaBZHQJrrlas6q811fZQoaAZoCWgPQwhXlX1XBNJkQJSGlFKUaBVN6ANoFkdAmvTUKArhBXV9lChoBmgJaA9DCKm9iLZj8mJAlIaUUpRoFU3oA2gWR0Ca+an/1g6VdX2UKGgGaAloD0MIVkYjn1eVY0CUhpRSlGgVTegDaBZHQJr6U3VCojx1fZQoaAZoCWgPQwh4DmWoCohwQJSGlFKUaBVNRANoFkdAmvtCzHCGe3V9lChoBmgJaA9DCKUtrvEZd3FAlIaUUpRoFU1/AmgWR0Ca++mvW6K+dX2UKGgGaAloD0MI5bM8D67gcECUhpRSlGgVTVkBaBZHQJr9De3x4IN1fZQoaAZoCWgPQwhZiXlWkpVwQJSGlFKUaBVNrgNoFkdAmv/JSiudPXV9lChoBmgJaA9DCHfc8Ltpfm9AlIaUUpRoFU3RAWgWR0CbApo6jnFHdX2UKGgGaAloD0MI5dAi2/loR0CUhpRSlGgVS9poFkdAmwRLYf4h2XV9lChoBmgJaA9DCLjKEwg7NGNAlIaUUpRoFU3oA2gWR0CbBTUpNKywdX2UKGgGaAloD0MI6nb2lQfzQECUhpRSlGgVS+RoFkdAmwYXAM2FWXV9lChoBmgJaA9DCBqH+l1YxmBAlIaUUpRoFU3oA2gWR0CbBwyhBZ6ldX2UKGgGaAloD0MIw2LUtfbFY0CUhpRSlGgVTegDaBZHQJsHXKq4pc51fZQoaAZoCWgPQwhfJoqQOpZlQJSGlFKUaBVN6ANoFkdAmwrRUR3/xXV9lChoBmgJaA9DCAPrOH6oTkxAlIaUUpRoFUu/aBZHQJsN4sg+yJN1fZQoaAZoCWgPQwizRGeZxThnQJSGlFKUaBVN6ANoFkdAmw5kv4/NaHV9lChoBmgJaA9DCOt0IOspnG9AlIaUUpRoFU0+AWgWR0CbEXslb/wRdX2UKGgGaAloD0MIUU60qxBdZECUhpRSlGgVTegDaBZHQJsSn8uSOip1fZQoaAZoCWgPQwg42QbuQItiQJSGlFKUaBVN6ANoFkdAmxRCmALApXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-V2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87b97f92dbebe26a1a676c80c4e8e8a21aa37809927fe1cd5e520f2ed0c91507
3
+ size 87929
ppo-LunarLander-V2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0087c2fdf79c2ce6cab45a1b54dd45a889c9f50bd957fc0756614bf8c2239496
3
+ size 43201
ppo-LunarLander-V2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-V2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (239 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 244.5085511585214, "std_reward": 39.99359400931292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T02:33:44.435681"}