|
--- |
|
language: |
|
- en |
|
- es |
|
- fr |
|
- nl |
|
- de |
|
- fi |
|
- ru |
|
- tr |
|
- ko |
|
- zh |
|
- ja |
|
- th |
|
- pt |
|
- it |
|
- sv |
|
- hu |
|
- pl |
|
- et |
|
- hr |
|
- uk |
|
- el |
|
- da |
|
- he |
|
tags: |
|
- biomedical |
|
- bionlp |
|
- entity linking |
|
- embedding |
|
- bert |
|
--- |
|
|
|
A multilingual **BERGAMOT**: **B**iomedical **E**ntity **R**epresentation with **G**raph-**A**ugmented **M**ulti-**O**bjective **T**ransformer model with pre-trained on UMLS (version 2020AB) using a Graph Attention Network (GAT) encoder. |
|
|
|
For technical details see our [NAACL 2024 paper](https://aclanthology.org/2024.findings-naacl.288). |
|
|
|
[Here is the poster](https://github.com/Andoree/BERGAMOT/blob/main/BERGAMOT_poster_naacl.jpg) of our paper. |
|
|
|
|
|
|
|
For pretraining code see our github: [https://github.com/Andoree/BERGAMOT](https://github.com/Andoree/BERGAMOT). |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{sakhovskiy-et-al-2024-bergamot, |
|
title = "Biomedical Entity Representation with Graph-Augmented Multi-Objective Transformer", |
|
author = "Sakhovskiy, Andrey and Semenova, Natalia and Kadurin, Artur and Tutubalina, Elena", |
|
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024", |
|
month = jun, |
|
year = "2024", |
|
address = "Mexico City, Mexico", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
``` |
|
|