metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-armenian-CV17.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: hy-AM
split: test
args: hy-AM
metrics:
- name: Wer
type: wer
value: 0.12880886426592797
w2v-bert-2.0-armenian-CV17.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1202
- Wer: 0.1288
- Cer: 0.0227
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.6647 | 1.0 | 325 | 0.2207 | 0.2605 | 0.0452 |
0.1807 | 2.0 | 650 | 0.1774 | 0.2183 | 0.0382 |
0.111 | 3.0 | 975 | 0.1447 | 0.1671 | 0.0295 |
0.0672 | 4.0 | 1300 | 0.1303 | 0.1439 | 0.0252 |
0.04 | 5.0 | 1625 | 0.1202 | 0.1288 | 0.0227 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1