Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: Qwen/Qwen2.5-7B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: false

load_in_8bit: false
load_in_4bit: false
strict: false

output_dir: ./outputs/out
chat_template: qwen_25
datasets:
  - path: train_base.jsonl
    type: chat_template
    field_messages: messages
    message_field_role: role
    message_field_content: content
    roles:
      system:
        - system
      user:
        - user
      assistant:
        - assistant

dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out
eval_sample_packing: False

sequence_len: 8192
sample_packing: False
pad_to_sequence_len: False

wandb_project: mergedbench
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: amphora/merged-bench-train-base

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

gradient_accumulation_steps: 4
micro_batch_size: 8
eval_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 30
evals_per_epoch: 3
eval_max_new_tokens: 128
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:

merged-bench-train-base

This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the train_base.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
1.0175 0.0118 1 1.0696
0.3467 0.3314 28 0.5233
0.3178 0.6627 56 0.4110
0.3214 0.9941 84 0.3711
0.2103 1.3195 112 0.3646
0.2032 1.6509 140 0.3586
0.191 1.9822 168 0.3436
0.1189 2.3077 196 0.3672
0.1051 2.6391 224 0.3723
0.1103 2.9704 252 0.3727

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
1.09B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for amphora/merged-bench-train-base

Base model

Qwen/Qwen2.5-7B
Finetuned
(1005)
this model