Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: Qwen/Qwen2.5-7B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: false

load_in_8bit: false
load_in_4bit: false
strict: false

output_dir: ./outputs/out
chat_template: qwen_25
datasets:
  - path: train_seen_prompt_long.jsonl
    type: chat_template
    field_messages: messages
    message_field_role: role
    message_field_content: content
    roles:
      system:
        - system
      user:
        - user
      assistant:
        - assistant

dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out
eval_sample_packing: False

sequence_len: 8192
sample_packing: False
pad_to_sequence_len: False

wandb_project: mergedbench
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: amphora/merged-bench-prompt-long

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

gradient_accumulation_steps: 4
micro_batch_size: 8
eval_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 30
evals_per_epoch: 3
eval_max_new_tokens: 128
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:

merged-bench-prompt-long

This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the train_seen_prompt_long.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2390

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
1.0424 0.0216 1 1.1022
0.4627 0.3459 16 0.4690
0.3652 0.6919 32 0.2979
0.2576 1.0216 48 0.2602
0.2602 1.3676 64 0.2575
0.2188 1.7135 80 0.2477
0.1277 2.0432 96 0.2325
0.1217 2.3892 112 0.2498
0.1168 2.7351 128 0.2390

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
7.62B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for amphora/merged-bench-prompt-long

Base model

Qwen/Qwen2.5-7B
Finetuned
(1013)
this model