Upload 2 files
#1
by
zihengg
- opened
- eval_onnx.py +144 -104
- movenet_int8.onnx +2 -2
eval_onnx.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import onnxruntime as rt
|
2 |
import numpy as np
|
3 |
import json
|
@@ -14,7 +15,7 @@ MODEL_DIR = './movenet_int8.onnx' # Path to the MoveNet model
|
|
14 |
IMG_SIZE = 192 # Image size used for processing
|
15 |
FEATURE_MAP_SIZE = 48 # Feature map size used in the model
|
16 |
CENTER_WEIGHT_ORIGIN_PATH = './center_weight_origin.npy' # Path to center weight origin file
|
17 |
-
DATASET_PATH = '
|
18 |
EVAL_LABLE_PATH = os.path.join(DATASET_PATH, "val2017.json") # Path to validation labels JSON file
|
19 |
EVAL_IMG_PATH = os.path.join(DATASET_PATH, 'imgs') # Path to validation images
|
20 |
|
@@ -50,6 +51,7 @@ def getAccRight(dist, th = 5/IMG_SIZE):
|
|
50 |
res = np.zeros(dist.shape[1], dtype=np.int64)
|
51 |
for i in range(dist.shape[1]):
|
52 |
res[i] = sum(dist[:,i]<th)
|
|
|
53 |
return res
|
54 |
|
55 |
def myAcc(output, target):
|
@@ -63,6 +65,7 @@ def myAcc(output, target):
|
|
63 |
Returns:
|
64 |
cate_acc: Categorical accuracy [7,] representing the count of correct predictions per keypoint
|
65 |
'''
|
|
|
66 |
# [h, ls, rs, lb, rb, lr, rr]
|
67 |
# output[:,6:10] = output[:,6:10]+output[:,2:6]
|
68 |
# output[:,10:14] = output[:,10:14]+output[:,6:10]
|
@@ -91,11 +94,15 @@ def maxPoint(heatmap, center=True):
|
|
91 |
if len(heatmap.shape) == 3:
|
92 |
batch_size,h,w = heatmap.shape
|
93 |
c = 1
|
|
|
94 |
elif len(heatmap.shape) == 4:
|
95 |
# n,c,h,w
|
96 |
batch_size,c,h,w = heatmap.shape
|
|
|
97 |
if center:
|
98 |
-
heatmap = heatmap*_center_weight
|
|
|
|
|
99 |
heatmap = heatmap.reshape((batch_size,c, -1)) #64,c, cfg['feature_map_size']xcfg['feature_map_size']
|
100 |
max_id = np.argmax(heatmap,2)#64,c, 1
|
101 |
y = max_id//w
|
@@ -103,47 +110,47 @@ def maxPoint(heatmap, center=True):
|
|
103 |
# bv
|
104 |
return x,y
|
105 |
|
|
|
106 |
def movenetDecode(data, kps_mask=None,mode='output', num_joints = 17,
|
107 |
img_size=192, hm_th=0.1):
|
108 |
-
|
109 |
-
'''
|
110 |
-
Decode MoveNet output data to predicted keypoints.
|
111 |
-
|
112 |
-
Args:
|
113 |
-
data: MoveNet output data
|
114 |
-
kps_mask: Keypoints mask
|
115 |
-
mode: Mode of decoding ('output' or 'label')
|
116 |
-
num_joints: Number of joints/keypoints
|
117 |
-
img_size: Image size
|
118 |
-
hm_th: Threshold for heatmap processing
|
119 |
-
|
120 |
-
Returns:
|
121 |
-
res: Decoded keypoints
|
122 |
-
'''
|
123 |
-
|
124 |
##data [64, 7, 48, 48] [64, 1, 48, 48] [64, 14, 48, 48] [64, 14, 48, 48]
|
125 |
#kps_mask [n, 7]
|
|
|
|
|
126 |
if mode == 'output':
|
127 |
batch_size = data[0].shape[0]
|
|
|
128 |
heatmaps = data[0]
|
|
|
129 |
heatmaps[heatmaps < hm_th] = 0
|
|
|
130 |
centers = data[1]
|
|
|
|
|
131 |
regs = data[2]
|
132 |
offsets = data[3]
|
|
|
|
|
133 |
cx,cy = maxPoint(centers)
|
|
|
134 |
dim0 = np.arange(batch_size,dtype=np.int32).reshape(batch_size,1)
|
135 |
dim1 = np.zeros((batch_size,1),dtype=np.int32)
|
|
|
136 |
res = []
|
137 |
for n in range(num_joints):
|
|
|
|
|
138 |
reg_x_origin = (regs[dim0,dim1+n*2,cy,cx]+0.5).astype(np.int32)
|
139 |
reg_y_origin = (regs[dim0,dim1+n*2+1,cy,cx]+0.5).astype(np.int32)
|
140 |
reg_x = reg_x_origin+cx
|
141 |
reg_y = reg_y_origin+cy
|
|
|
142 |
### for post process
|
143 |
reg_x = np.reshape(reg_x, (reg_x.shape[0],1,1))
|
144 |
reg_y = np.reshape(reg_y, (reg_y.shape[0],1,1))
|
145 |
reg_x = reg_x.repeat(FEATURE_MAP_SIZE,1).repeat(FEATURE_MAP_SIZE,2)
|
146 |
reg_y = reg_y.repeat(FEATURE_MAP_SIZE,1).repeat(FEATURE_MAP_SIZE,2)
|
|
|
147 |
range_weight_x = np.reshape(_range_weight_x,(1,FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)).repeat(reg_x.shape[0],0)
|
148 |
range_weight_y = np.reshape(_range_weight_y,(1,FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)).repeat(reg_x.shape[0],0)
|
149 |
tmp_reg_x = (range_weight_x-reg_x)**2
|
@@ -152,10 +159,12 @@ def movenetDecode(data, kps_mask=None,mode='output', num_joints = 17,
|
|
152 |
tmp_reg = heatmaps[:,n,...]/tmp_reg
|
153 |
tmp_reg = tmp_reg[:,np.newaxis,:,:]
|
154 |
reg_x,reg_y = maxPoint(tmp_reg, center=False)
|
|
|
155 |
reg_x[reg_x>47] = 47
|
156 |
reg_x[reg_x<0] = 0
|
157 |
reg_y[reg_y>47] = 47
|
158 |
reg_y[reg_y<0] = 0
|
|
|
159 |
score = heatmaps[dim0,dim1+n,reg_y,reg_x]
|
160 |
offset_x = offsets[dim0,dim1+n*2,reg_y,reg_x]#*img_size//4
|
161 |
offset_y = offsets[dim0,dim1+n*2+1,reg_y,reg_x]#*img_size//4
|
@@ -163,57 +172,69 @@ def movenetDecode(data, kps_mask=None,mode='output', num_joints = 17,
|
|
163 |
res_y = (reg_y+offset_y)/(img_size//4)
|
164 |
res_x[score<hm_th] = -1
|
165 |
res_y[score<hm_th] = -1
|
|
|
|
|
166 |
res.extend([res_x, res_y])
|
|
|
|
|
167 |
res = np.concatenate(res,axis=1) #bs*14
|
|
|
|
|
|
|
168 |
elif mode == 'label':
|
169 |
kps_mask = kps_mask.detach().cpu().numpy()
|
|
|
170 |
data = data.detach().cpu().numpy()
|
171 |
batch_size = data.shape[0]
|
|
|
172 |
heatmaps = data[:,:17,:,:]
|
173 |
centers = data[:,17:18,:,:]
|
174 |
regs = data[:,18:52,:,:]
|
175 |
offsets = data[:,52:,:,:]
|
|
|
176 |
cx,cy = maxPoint(centers)
|
177 |
dim0 = np.arange(batch_size,dtype=np.int32).reshape(batch_size,1)
|
178 |
dim1 = np.zeros((batch_size,1),dtype=np.int32)
|
|
|
179 |
res = []
|
180 |
for n in range(num_joints):
|
|
|
181 |
reg_x_origin = (regs[dim0,dim1+n*2,cy,cx]+0.5).astype(np.int32)
|
182 |
reg_y_origin = (regs[dim0,dim1+n*2+1,cy,cx]+0.5).astype(np.int32)
|
183 |
reg_x = reg_x_origin+cx
|
184 |
reg_y = reg_y_origin+cy
|
|
|
|
|
185 |
reg_x[reg_x>47] = 47
|
186 |
reg_x[reg_x<0] = 0
|
187 |
reg_y[reg_y>47] = 47
|
188 |
reg_y[reg_y<0] = 0
|
|
|
189 |
offset_x = offsets[dim0,dim1+n*2,reg_y,reg_x]#*img_size//4
|
190 |
offset_y = offsets[dim0,dim1+n*2+1,reg_y,reg_x]#*img_size//4
|
|
|
191 |
res_x = (reg_x+offset_x)/(img_size//4)
|
192 |
res_y = (reg_y+offset_y)/(img_size//4)
|
|
|
|
|
193 |
res_x[kps_mask[:,n]==0] = -1
|
194 |
res_y[kps_mask[:,n]==0] = -1
|
195 |
res.extend([res_x, res_y])
|
|
|
|
|
196 |
res = np.concatenate(res,axis=1) #bs*14
|
|
|
197 |
return res
|
198 |
|
|
|
199 |
def label2heatmap(keypoints, other_keypoints, img_size):
|
200 |
-
'''
|
201 |
-
Convert labeled keypoints to heatmaps for keypoints.
|
202 |
-
|
203 |
-
Args:
|
204 |
-
keypoints: Target person's keypoints
|
205 |
-
other_keypoints: Other people's keypoints
|
206 |
-
img_size: Size of the image
|
207 |
-
|
208 |
-
Returns:
|
209 |
-
heatmaps: Heatmaps for keypoints
|
210 |
-
sigma: Value used for heatmap generation
|
211 |
-
'''
|
212 |
#keypoints: target person
|
213 |
#other_keypoints: other people's keypoints need to be add to the heatmap
|
214 |
heatmaps = []
|
|
|
215 |
keypoints_range = np.reshape(keypoints,(-1,3))
|
216 |
keypoints_range = keypoints_range[keypoints_range[:,2]>0]
|
|
|
217 |
min_x = np.min(keypoints_range[:,0])
|
218 |
min_y = np.min(keypoints_range[:,1])
|
219 |
max_x = np.max(keypoints_range[:,0])
|
@@ -226,40 +247,36 @@ def label2heatmap(keypoints, other_keypoints, img_size):
|
|
226 |
sigma = 5
|
227 |
else:
|
228 |
sigma = 7
|
|
|
|
|
229 |
for i in range(0,len(keypoints),3):
|
230 |
if keypoints[i+2]==0:
|
231 |
heatmaps.append(np.zeros((img_size//4, img_size//4)))
|
232 |
continue
|
233 |
-
|
|
|
234 |
y = int(keypoints[i+1]*img_size//4)
|
235 |
if x==img_size//4:x=(img_size//4-1)
|
236 |
if y==img_size//4:y=(img_size//4-1)
|
237 |
if x>img_size//4 or x<0:x=-1
|
238 |
if y>img_size//4 or y<0:y=-1
|
239 |
heatmap = generate_heatmap(x, y, other_keypoints[i//3], (img_size//4, img_size//4),sigma)
|
|
|
240 |
heatmaps.append(heatmap)
|
|
|
241 |
heatmaps = np.array(heatmaps, dtype=np.float32)
|
242 |
return heatmaps,sigma
|
243 |
|
244 |
-
def generate_heatmap(x, y, other_keypoints, size, sigma):
|
245 |
-
'''
|
246 |
-
Generate a heatmap for a specific keypoint.
|
247 |
-
|
248 |
-
Args:
|
249 |
-
x, y: Absolute position of the keypoint
|
250 |
-
other_keypoints: Position of other keypoints
|
251 |
-
size: Size of the heatmap
|
252 |
-
sigma: Value used for heatmap generation
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
'''
|
257 |
#x,y abs postion
|
258 |
#other_keypoints positive position
|
259 |
sigma+=6
|
260 |
heatmap = np.zeros(size)
|
261 |
if x<0 or y<0 or x>=size[0] or y>=size[1]:
|
262 |
return heatmap
|
|
|
263 |
tops = [[x,y]]
|
264 |
if len(other_keypoints)>0:
|
265 |
#add other people's keypoints
|
@@ -270,6 +287,8 @@ def generate_heatmap(x, y, other_keypoints, size, sigma):
|
|
270 |
if y==size[1]:y=(size[1]-1)
|
271 |
if x>size[0] or x<0 or y>size[1] or y<0: continue
|
272 |
tops.append([x,y])
|
|
|
|
|
273 |
for top in tops:
|
274 |
#heatmap[top[1]][top[0]] = 1
|
275 |
x,y = top
|
@@ -277,60 +296,55 @@ def generate_heatmap(x, y, other_keypoints, size, sigma):
|
|
277 |
x1 = min(size[0],x+sigma//2)
|
278 |
y0 = max(0,y-sigma//2)
|
279 |
y1 = min(size[1],y+sigma//2)
|
|
|
|
|
280 |
for map_y in range(y0, y1):
|
281 |
for map_x in range(x0, x1):
|
282 |
d2 = ((map_x - x) ** 2 + (map_y - y) ** 2)**0.5
|
|
|
283 |
if d2<=sigma//2:
|
284 |
heatmap[map_y, map_x] += math.exp(-d2/(sigma//2)*3)
|
285 |
if heatmap[map_y, map_x] > 1:
|
|
|
286 |
heatmap[map_y, map_x] = 1
|
|
|
287 |
# heatmap[heatmap<0.1] = 0
|
288 |
return heatmap
|
289 |
|
|
|
290 |
def label2center(cx, cy, other_centers, img_size, sigma):
|
291 |
-
'''
|
292 |
-
Convert labeled keypoints to a center heatmap.
|
293 |
-
|
294 |
-
Args:
|
295 |
-
cx, cy: Center coordinates
|
296 |
-
other_centers: Other people's centers
|
297 |
-
img_size: Size of the image
|
298 |
-
sigma: Value used for heatmap generation
|
299 |
-
|
300 |
-
Returns:
|
301 |
-
heatmaps: Heatmap representing the center
|
302 |
-
'''
|
303 |
heatmaps = []
|
|
|
304 |
heatmap = generate_heatmap(cx, cy, other_centers, (img_size//4, img_size//4),sigma+2)
|
305 |
heatmaps.append(heatmap)
|
|
|
306 |
heatmaps = np.array(heatmaps, dtype=np.float32)
|
|
|
|
|
307 |
return heatmaps
|
308 |
|
|
|
309 |
def label2reg(keypoints, cx, cy, img_size):
|
310 |
-
'''
|
311 |
-
Convert labeled keypoints to regression maps.
|
312 |
-
|
313 |
-
Args:
|
314 |
-
keypoints: Labeled keypoints
|
315 |
-
cx, cy: Center coordinates
|
316 |
-
img_size: Size of the image
|
317 |
-
|
318 |
-
Returns:
|
319 |
-
heatmaps: Regression maps for keypoints
|
320 |
-
'''
|
321 |
|
322 |
heatmaps = np.zeros((len(keypoints)//3*2, img_size//4, img_size//4), dtype=np.float32)
|
|
|
323 |
for i in range(len(keypoints)//3):
|
324 |
if keypoints[i*3+2]==0:
|
325 |
continue
|
|
|
326 |
x = keypoints[i*3]*img_size//4
|
327 |
y = keypoints[i*3+1]*img_size//4
|
328 |
if x==img_size//4:x=(img_size//4-1)
|
329 |
if y==img_size//4:y=(img_size//4-1)
|
330 |
if x>img_size//4 or x<0 or y>img_size//4 or y<0:
|
331 |
continue
|
|
|
332 |
reg_x = x-cx
|
333 |
reg_y = y-cy
|
|
|
|
|
|
|
|
|
334 |
for j in range(cy-2,cy+3):
|
335 |
if j<0 or j>img_size//4-1:
|
336 |
continue
|
@@ -345,55 +359,57 @@ def label2reg(keypoints, cx, cy, img_size):
|
|
345 |
heatmaps[i*2+1][j][k] = reg_y-(cy-j)#/(img_size//4)
|
346 |
else:
|
347 |
heatmaps[i*2+1][j][k] = reg_y+(cy-j)
|
|
|
348 |
return heatmaps
|
349 |
|
|
|
350 |
def label2offset(keypoints, cx, cy, regs, img_size):
|
351 |
-
'''
|
352 |
-
Convert labeled keypoints to offset maps.
|
353 |
-
|
354 |
-
Args:
|
355 |
-
keypoints: Labeled keypoints
|
356 |
-
cx, cy: Center coordinates
|
357 |
-
regs: Regression maps
|
358 |
-
img_size: Size of the image
|
359 |
-
|
360 |
-
Returns:
|
361 |
-
heatmaps: Offset maps for keypoints
|
362 |
-
'''
|
363 |
heatmaps = np.zeros((len(keypoints)//3*2, img_size//4, img_size//4), dtype=np.float32)
|
|
|
364 |
for i in range(len(keypoints)//3):
|
365 |
if keypoints[i*3+2]==0:
|
366 |
continue
|
|
|
367 |
large_x = int(keypoints[i*3]*img_size)
|
368 |
large_y = int(keypoints[i*3+1]*img_size)
|
|
|
|
|
369 |
small_x = int(regs[i*2,cy,cx]+cx)
|
370 |
small_y = int(regs[i*2+1,cy,cx]+cy)
|
|
|
|
|
371 |
offset_x = large_x/4-small_x
|
372 |
offset_y = large_y/4-small_y
|
|
|
373 |
if small_x==img_size//4:small_x=(img_size//4-1)
|
374 |
if small_y==img_size//4:small_y=(img_size//4-1)
|
375 |
if small_x>img_size//4 or small_x<0 or small_y>img_size//4 or small_y<0:
|
376 |
continue
|
|
|
377 |
heatmaps[i*2][small_y][small_x] = offset_x#/(img_size//4)
|
378 |
heatmaps[i*2+1][small_y][small_x] = offset_y#/(img_size//4)
|
|
|
|
|
379 |
return heatmaps
|
380 |
|
|
|
381 |
class TensorDataset(Dataset):
|
382 |
-
'''
|
383 |
-
Custom Dataset class for handling data loading and preprocessing
|
384 |
-
'''
|
385 |
|
386 |
def __init__(self, data_labels, img_dir, img_size, data_aug=None):
|
387 |
self.data_labels = data_labels
|
388 |
self.img_dir = img_dir
|
389 |
self.data_aug = data_aug
|
390 |
self.img_size = img_size
|
|
|
|
|
391 |
self.interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA,
|
392 |
cv2.INTER_NEAREST, cv2.INTER_LANCZOS4]
|
393 |
|
394 |
|
395 |
def __getitem__(self, index):
|
|
|
396 |
item = self.data_labels[index]
|
|
|
397 |
"""
|
398 |
item = {
|
399 |
"img_name":save_name,
|
@@ -405,50 +421,70 @@ class TensorDataset(Dataset):
|
|
405 |
"""
|
406 |
# [name,h,w,keypoints...]
|
407 |
img_path = os.path.join(self.img_dir, item["img_name"])
|
|
|
408 |
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
409 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
410 |
img = cv2.resize(img, (self.img_size, self.img_size),
|
411 |
interpolation=random.choice(self.interp_methods))
|
|
|
|
|
412 |
#### Data Augmentation
|
413 |
if self.data_aug is not None:
|
414 |
img, item = self.data_aug(img, item)
|
|
|
|
|
415 |
img = img.astype(np.float32)
|
416 |
img = np.transpose(img,axes=[2,0,1])
|
|
|
|
|
417 |
keypoints = item["keypoints"]
|
418 |
center = item['center']
|
419 |
other_centers = item["other_centers"]
|
420 |
other_keypoints = item["other_keypoints"]
|
|
|
|
|
421 |
kps_mask = np.ones(len(keypoints)//3)
|
422 |
for i in range(len(keypoints)//3):
|
|
|
423 |
if keypoints[i*3+2]==0:
|
424 |
kps_mask[i] = 0
|
|
|
|
|
|
|
425 |
heatmaps,sigma = label2heatmap(keypoints, other_keypoints, self.img_size) #(17, 48, 48)
|
|
|
|
|
|
|
426 |
cx = min(max(0,int(center[0]*self.img_size//4)),self.img_size//4-1)
|
427 |
cy = min(max(0,int(center[1]*self.img_size//4)),self.img_size//4-1)
|
|
|
|
|
428 |
centers = label2center(cx, cy, other_centers, self.img_size, sigma) #(1, 48, 48)
|
|
|
429 |
regs = label2reg(keypoints, cx, cy, self.img_size) #(14, 48, 48)
|
|
|
|
|
430 |
offsets = label2offset(keypoints, cx, cy, regs, self.img_size)#(14, 48, 48)
|
|
|
|
|
|
|
|
|
431 |
labels = np.concatenate([heatmaps,centers,regs,offsets],axis=0)
|
432 |
img = img / 127.5 - 1.0
|
433 |
return img, labels, kps_mask, img_path
|
434 |
|
|
|
|
|
|
|
435 |
def __len__(self):
|
436 |
return len(self.data_labels)
|
437 |
|
438 |
# Function to get data loader based on mode (e.g., evaluation)
|
439 |
def getDataLoader(mode, input_data):
|
440 |
-
'''
|
441 |
-
Function to get data loader based on mode (e.g., evaluation).
|
442 |
-
|
443 |
-
Args:
|
444 |
-
mode: Mode of data loader (e.g., 'eval')
|
445 |
-
input_data: Input data
|
446 |
-
|
447 |
-
Returns:
|
448 |
-
data_loader: DataLoader for specified mode
|
449 |
-
'''
|
450 |
|
451 |
if mode=="eval":
|
|
|
452 |
val_loader = torch.utils.data.DataLoader(
|
453 |
TensorDataset(input_data[0],
|
454 |
EVAL_IMG_PATH,
|
@@ -458,33 +494,27 @@ def getDataLoader(mode, input_data):
|
|
458 |
shuffle=False,
|
459 |
num_workers=0,
|
460 |
pin_memory=False)
|
|
|
461 |
return val_loader
|
462 |
|
463 |
# Class for managing data and obtaining evaluation data loader
|
464 |
class Data():
|
465 |
-
'''
|
466 |
-
Class for managing data and obtaining evaluation data loader.
|
467 |
-
'''
|
468 |
def __init__(self):
|
469 |
pass
|
470 |
|
471 |
def getEvalDataloader(self):
|
472 |
with open(EVAL_LABLE_PATH, 'r') as f:
|
473 |
data_label_list = json.loads(f.readlines()[0])
|
|
|
474 |
print("[INFO] Total images: ", len(data_label_list))
|
|
|
|
|
475 |
input_data = [data_label_list]
|
476 |
data_loader = getDataLoader("eval",
|
477 |
input_data)
|
478 |
return data_loader
|
479 |
-
|
480 |
# Configs for onnx inference session
|
481 |
def make_parser():
|
482 |
-
'''
|
483 |
-
Create parser for MoveNet ONNX runtime inference.
|
484 |
-
|
485 |
-
Returns:
|
486 |
-
parser: Argument parser for MoveNet inference
|
487 |
-
'''
|
488 |
parser = argparse.ArgumentParser("movenet onnxruntime inference")
|
489 |
parser.add_argument(
|
490 |
"--ipu",
|
@@ -514,20 +544,30 @@ if __name__ == '__main__':
|
|
514 |
data_loader = data.getEvalDataloader()
|
515 |
# Load MoveNet model using ONNX runtime
|
516 |
model = rt.InferenceSession(MODEL_DIR, providers=providers, provider_options=provider_options)
|
517 |
-
|
518 |
correct = 0
|
519 |
total = 0
|
520 |
# Loop through the data loader for evaluation
|
521 |
for batch_idx, (imgs, labels, kps_mask, img_names) in enumerate(data_loader):
|
|
|
522 |
if batch_idx%100 == 0:
|
523 |
print('Finish ',batch_idx)
|
|
|
524 |
imgs = imgs.detach().cpu().numpy()
|
525 |
-
|
|
|
|
|
|
|
|
|
|
|
526 |
pre = movenetDecode(output, kps_mask,mode='output',img_size=IMG_SIZE)
|
527 |
gt = movenetDecode(labels, kps_mask,mode='label',img_size=IMG_SIZE)
|
|
|
|
|
528 |
acc = myAcc(pre, gt)
|
|
|
529 |
correct += sum(acc)
|
530 |
total += len(acc)
|
531 |
# Compute and print accuracy based on evaluated data
|
532 |
acc = correct/total
|
533 |
-
print('[Info] acc: {:.3f}% \n'.format(100. * acc))
|
|
|
1 |
+
|
2 |
import onnxruntime as rt
|
3 |
import numpy as np
|
4 |
import json
|
|
|
15 |
IMG_SIZE = 192 # Image size used for processing
|
16 |
FEATURE_MAP_SIZE = 48 # Feature map size used in the model
|
17 |
CENTER_WEIGHT_ORIGIN_PATH = './center_weight_origin.npy' # Path to center weight origin file
|
18 |
+
DATASET_PATH = '/group/dphi_algo_scratch_02/ziheng/datasets/coco/croped' # Base path for the dataset
|
19 |
EVAL_LABLE_PATH = os.path.join(DATASET_PATH, "val2017.json") # Path to validation labels JSON file
|
20 |
EVAL_IMG_PATH = os.path.join(DATASET_PATH, 'imgs') # Path to validation images
|
21 |
|
|
|
51 |
res = np.zeros(dist.shape[1], dtype=np.int64)
|
52 |
for i in range(dist.shape[1]):
|
53 |
res[i] = sum(dist[:,i]<th)
|
54 |
+
|
55 |
return res
|
56 |
|
57 |
def myAcc(output, target):
|
|
|
65 |
Returns:
|
66 |
cate_acc: Categorical accuracy [7,] representing the count of correct predictions per keypoint
|
67 |
'''
|
68 |
+
|
69 |
# [h, ls, rs, lb, rb, lr, rr]
|
70 |
# output[:,6:10] = output[:,6:10]+output[:,2:6]
|
71 |
# output[:,10:14] = output[:,10:14]+output[:,6:10]
|
|
|
94 |
if len(heatmap.shape) == 3:
|
95 |
batch_size,h,w = heatmap.shape
|
96 |
c = 1
|
97 |
+
|
98 |
elif len(heatmap.shape) == 4:
|
99 |
# n,c,h,w
|
100 |
batch_size,c,h,w = heatmap.shape
|
101 |
+
|
102 |
if center:
|
103 |
+
heatmap = heatmap*_center_weight#加权取最靠近中间的
|
104 |
+
|
105 |
+
|
106 |
heatmap = heatmap.reshape((batch_size,c, -1)) #64,c, cfg['feature_map_size']xcfg['feature_map_size']
|
107 |
max_id = np.argmax(heatmap,2)#64,c, 1
|
108 |
y = max_id//w
|
|
|
110 |
# bv
|
111 |
return x,y
|
112 |
|
113 |
+
# Function for decoding MoveNet output data
|
114 |
def movenetDecode(data, kps_mask=None,mode='output', num_joints = 17,
|
115 |
img_size=192, hm_th=0.1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
##data [64, 7, 48, 48] [64, 1, 48, 48] [64, 14, 48, 48] [64, 14, 48, 48]
|
117 |
#kps_mask [n, 7]
|
118 |
+
|
119 |
+
|
120 |
if mode == 'output':
|
121 |
batch_size = data[0].shape[0]
|
122 |
+
|
123 |
heatmaps = data[0]
|
124 |
+
|
125 |
heatmaps[heatmaps < hm_th] = 0
|
126 |
+
|
127 |
centers = data[1]
|
128 |
+
|
129 |
+
|
130 |
regs = data[2]
|
131 |
offsets = data[3]
|
132 |
+
|
133 |
+
|
134 |
cx,cy = maxPoint(centers)
|
135 |
+
|
136 |
dim0 = np.arange(batch_size,dtype=np.int32).reshape(batch_size,1)
|
137 |
dim1 = np.zeros((batch_size,1),dtype=np.int32)
|
138 |
+
|
139 |
res = []
|
140 |
for n in range(num_joints):
|
141 |
+
#nchw!!!!!!!!!!!!!!!!!
|
142 |
+
|
143 |
reg_x_origin = (regs[dim0,dim1+n*2,cy,cx]+0.5).astype(np.int32)
|
144 |
reg_y_origin = (regs[dim0,dim1+n*2+1,cy,cx]+0.5).astype(np.int32)
|
145 |
reg_x = reg_x_origin+cx
|
146 |
reg_y = reg_y_origin+cy
|
147 |
+
|
148 |
### for post process
|
149 |
reg_x = np.reshape(reg_x, (reg_x.shape[0],1,1))
|
150 |
reg_y = np.reshape(reg_y, (reg_y.shape[0],1,1))
|
151 |
reg_x = reg_x.repeat(FEATURE_MAP_SIZE,1).repeat(FEATURE_MAP_SIZE,2)
|
152 |
reg_y = reg_y.repeat(FEATURE_MAP_SIZE,1).repeat(FEATURE_MAP_SIZE,2)
|
153 |
+
#### 根据center得到关键点回归位置,然后加权heatmap
|
154 |
range_weight_x = np.reshape(_range_weight_x,(1,FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)).repeat(reg_x.shape[0],0)
|
155 |
range_weight_y = np.reshape(_range_weight_y,(1,FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)).repeat(reg_x.shape[0],0)
|
156 |
tmp_reg_x = (range_weight_x-reg_x)**2
|
|
|
159 |
tmp_reg = heatmaps[:,n,...]/tmp_reg
|
160 |
tmp_reg = tmp_reg[:,np.newaxis,:,:]
|
161 |
reg_x,reg_y = maxPoint(tmp_reg, center=False)
|
162 |
+
|
163 |
reg_x[reg_x>47] = 47
|
164 |
reg_x[reg_x<0] = 0
|
165 |
reg_y[reg_y>47] = 47
|
166 |
reg_y[reg_y<0] = 0
|
167 |
+
|
168 |
score = heatmaps[dim0,dim1+n,reg_y,reg_x]
|
169 |
offset_x = offsets[dim0,dim1+n*2,reg_y,reg_x]#*img_size//4
|
170 |
offset_y = offsets[dim0,dim1+n*2+1,reg_y,reg_x]#*img_size//4
|
|
|
172 |
res_y = (reg_y+offset_y)/(img_size//4)
|
173 |
res_x[score<hm_th] = -1
|
174 |
res_y[score<hm_th] = -1
|
175 |
+
|
176 |
+
|
177 |
res.extend([res_x, res_y])
|
178 |
+
# b
|
179 |
+
|
180 |
res = np.concatenate(res,axis=1) #bs*14
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
elif mode == 'label':
|
185 |
kps_mask = kps_mask.detach().cpu().numpy()
|
186 |
+
|
187 |
data = data.detach().cpu().numpy()
|
188 |
batch_size = data.shape[0]
|
189 |
+
|
190 |
heatmaps = data[:,:17,:,:]
|
191 |
centers = data[:,17:18,:,:]
|
192 |
regs = data[:,18:52,:,:]
|
193 |
offsets = data[:,52:,:,:]
|
194 |
+
|
195 |
cx,cy = maxPoint(centers)
|
196 |
dim0 = np.arange(batch_size,dtype=np.int32).reshape(batch_size,1)
|
197 |
dim1 = np.zeros((batch_size,1),dtype=np.int32)
|
198 |
+
|
199 |
res = []
|
200 |
for n in range(num_joints):
|
201 |
+
#nchw!!!!!!!!!!!!!!!!!
|
202 |
reg_x_origin = (regs[dim0,dim1+n*2,cy,cx]+0.5).astype(np.int32)
|
203 |
reg_y_origin = (regs[dim0,dim1+n*2+1,cy,cx]+0.5).astype(np.int32)
|
204 |
reg_x = reg_x_origin+cx
|
205 |
reg_y = reg_y_origin+cy
|
206 |
+
|
207 |
+
# print(reg_x, reg_y)
|
208 |
reg_x[reg_x>47] = 47
|
209 |
reg_x[reg_x<0] = 0
|
210 |
reg_y[reg_y>47] = 47
|
211 |
reg_y[reg_y<0] = 0
|
212 |
+
|
213 |
offset_x = offsets[dim0,dim1+n*2,reg_y,reg_x]#*img_size//4
|
214 |
offset_y = offsets[dim0,dim1+n*2+1,reg_y,reg_x]#*img_size//4
|
215 |
+
# print(offset_x,offset_y)
|
216 |
res_x = (reg_x+offset_x)/(img_size//4)
|
217 |
res_y = (reg_y+offset_y)/(img_size//4)
|
218 |
+
|
219 |
+
#不存在的点设为-1 后续不参与acc计算
|
220 |
res_x[kps_mask[:,n]==0] = -1
|
221 |
res_y[kps_mask[:,n]==0] = -1
|
222 |
res.extend([res_x, res_y])
|
223 |
+
# b
|
224 |
+
|
225 |
res = np.concatenate(res,axis=1) #bs*14
|
226 |
+
|
227 |
return res
|
228 |
|
229 |
+
# Function to convert labeled keypoints to heatmaps for keypoints
|
230 |
def label2heatmap(keypoints, other_keypoints, img_size):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
#keypoints: target person
|
232 |
#other_keypoints: other people's keypoints need to be add to the heatmap
|
233 |
heatmaps = []
|
234 |
+
|
235 |
keypoints_range = np.reshape(keypoints,(-1,3))
|
236 |
keypoints_range = keypoints_range[keypoints_range[:,2]>0]
|
237 |
+
# print(keypoints_range)
|
238 |
min_x = np.min(keypoints_range[:,0])
|
239 |
min_y = np.min(keypoints_range[:,1])
|
240 |
max_x = np.max(keypoints_range[:,0])
|
|
|
247 |
sigma = 5
|
248 |
else:
|
249 |
sigma = 7
|
250 |
+
|
251 |
+
|
252 |
for i in range(0,len(keypoints),3):
|
253 |
if keypoints[i+2]==0:
|
254 |
heatmaps.append(np.zeros((img_size//4, img_size//4)))
|
255 |
continue
|
256 |
+
|
257 |
+
x = int(keypoints[i]*img_size//4) #取值应该是0-47
|
258 |
y = int(keypoints[i+1]*img_size//4)
|
259 |
if x==img_size//4:x=(img_size//4-1)
|
260 |
if y==img_size//4:y=(img_size//4-1)
|
261 |
if x>img_size//4 or x<0:x=-1
|
262 |
if y>img_size//4 or y<0:y=-1
|
263 |
heatmap = generate_heatmap(x, y, other_keypoints[i//3], (img_size//4, img_size//4),sigma)
|
264 |
+
|
265 |
heatmaps.append(heatmap)
|
266 |
+
|
267 |
heatmaps = np.array(heatmaps, dtype=np.float32)
|
268 |
return heatmaps,sigma
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
+
# Function to generate a heatmap for a specific keypoint
|
272 |
+
def generate_heatmap(x, y, other_keypoints, size, sigma):
|
|
|
273 |
#x,y abs postion
|
274 |
#other_keypoints positive position
|
275 |
sigma+=6
|
276 |
heatmap = np.zeros(size)
|
277 |
if x<0 or y<0 or x>=size[0] or y>=size[1]:
|
278 |
return heatmap
|
279 |
+
|
280 |
tops = [[x,y]]
|
281 |
if len(other_keypoints)>0:
|
282 |
#add other people's keypoints
|
|
|
287 |
if y==size[1]:y=(size[1]-1)
|
288 |
if x>size[0] or x<0 or y>size[1] or y<0: continue
|
289 |
tops.append([x,y])
|
290 |
+
|
291 |
+
|
292 |
for top in tops:
|
293 |
#heatmap[top[1]][top[0]] = 1
|
294 |
x,y = top
|
|
|
296 |
x1 = min(size[0],x+sigma//2)
|
297 |
y0 = max(0,y-sigma//2)
|
298 |
y1 = min(size[1],y+sigma//2)
|
299 |
+
|
300 |
+
|
301 |
for map_y in range(y0, y1):
|
302 |
for map_x in range(x0, x1):
|
303 |
d2 = ((map_x - x) ** 2 + (map_y - y) ** 2)**0.5
|
304 |
+
|
305 |
if d2<=sigma//2:
|
306 |
heatmap[map_y, map_x] += math.exp(-d2/(sigma//2)*3)
|
307 |
if heatmap[map_y, map_x] > 1:
|
308 |
+
#不同关键点可能重合,这里累加
|
309 |
heatmap[map_y, map_x] = 1
|
310 |
+
|
311 |
# heatmap[heatmap<0.1] = 0
|
312 |
return heatmap
|
313 |
|
314 |
+
# Function to convert labeled keypoints to a center heatmap
|
315 |
def label2center(cx, cy, other_centers, img_size, sigma):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
heatmaps = []
|
317 |
+
|
318 |
heatmap = generate_heatmap(cx, cy, other_centers, (img_size//4, img_size//4),sigma+2)
|
319 |
heatmaps.append(heatmap)
|
320 |
+
|
321 |
heatmaps = np.array(heatmaps, dtype=np.float32)
|
322 |
+
|
323 |
+
|
324 |
return heatmaps
|
325 |
|
326 |
+
# Function to convert labeled keypoints to regression maps
|
327 |
def label2reg(keypoints, cx, cy, img_size):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
heatmaps = np.zeros((len(keypoints)//3*2, img_size//4, img_size//4), dtype=np.float32)
|
330 |
+
# print(keypoints)
|
331 |
for i in range(len(keypoints)//3):
|
332 |
if keypoints[i*3+2]==0:
|
333 |
continue
|
334 |
+
|
335 |
x = keypoints[i*3]*img_size//4
|
336 |
y = keypoints[i*3+1]*img_size//4
|
337 |
if x==img_size//4:x=(img_size//4-1)
|
338 |
if y==img_size//4:y=(img_size//4-1)
|
339 |
if x>img_size//4 or x<0 or y>img_size//4 or y<0:
|
340 |
continue
|
341 |
+
|
342 |
reg_x = x-cx
|
343 |
reg_y = y-cy
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
for j in range(cy-2,cy+3):
|
349 |
if j<0 or j>img_size//4-1:
|
350 |
continue
|
|
|
359 |
heatmaps[i*2+1][j][k] = reg_y-(cy-j)#/(img_size//4)
|
360 |
else:
|
361 |
heatmaps[i*2+1][j][k] = reg_y+(cy-j)
|
362 |
+
|
363 |
return heatmaps
|
364 |
|
365 |
+
# Function to convert labeled keypoints to offset maps
|
366 |
def label2offset(keypoints, cx, cy, regs, img_size):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
heatmaps = np.zeros((len(keypoints)//3*2, img_size//4, img_size//4), dtype=np.float32)
|
368 |
+
|
369 |
for i in range(len(keypoints)//3):
|
370 |
if keypoints[i*3+2]==0:
|
371 |
continue
|
372 |
+
|
373 |
large_x = int(keypoints[i*3]*img_size)
|
374 |
large_y = int(keypoints[i*3+1]*img_size)
|
375 |
+
|
376 |
+
|
377 |
small_x = int(regs[i*2,cy,cx]+cx)
|
378 |
small_y = int(regs[i*2+1,cy,cx]+cy)
|
379 |
+
|
380 |
+
|
381 |
offset_x = large_x/4-small_x
|
382 |
offset_y = large_y/4-small_y
|
383 |
+
|
384 |
if small_x==img_size//4:small_x=(img_size//4-1)
|
385 |
if small_y==img_size//4:small_y=(img_size//4-1)
|
386 |
if small_x>img_size//4 or small_x<0 or small_y>img_size//4 or small_y<0:
|
387 |
continue
|
388 |
+
|
389 |
heatmaps[i*2][small_y][small_x] = offset_x#/(img_size//4)
|
390 |
heatmaps[i*2+1][small_y][small_x] = offset_y#/(img_size//4)
|
391 |
+
|
392 |
+
|
393 |
return heatmaps
|
394 |
|
395 |
+
# Custom Dataset class for handling data loading and preprocessing
|
396 |
class TensorDataset(Dataset):
|
|
|
|
|
|
|
397 |
|
398 |
def __init__(self, data_labels, img_dir, img_size, data_aug=None):
|
399 |
self.data_labels = data_labels
|
400 |
self.img_dir = img_dir
|
401 |
self.data_aug = data_aug
|
402 |
self.img_size = img_size
|
403 |
+
|
404 |
+
|
405 |
self.interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA,
|
406 |
cv2.INTER_NEAREST, cv2.INTER_LANCZOS4]
|
407 |
|
408 |
|
409 |
def __getitem__(self, index):
|
410 |
+
|
411 |
item = self.data_labels[index]
|
412 |
+
|
413 |
"""
|
414 |
item = {
|
415 |
"img_name":save_name,
|
|
|
421 |
"""
|
422 |
# [name,h,w,keypoints...]
|
423 |
img_path = os.path.join(self.img_dir, item["img_name"])
|
424 |
+
|
425 |
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
426 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
427 |
+
|
428 |
img = cv2.resize(img, (self.img_size, self.img_size),
|
429 |
interpolation=random.choice(self.interp_methods))
|
430 |
+
|
431 |
+
|
432 |
#### Data Augmentation
|
433 |
if self.data_aug is not None:
|
434 |
img, item = self.data_aug(img, item)
|
435 |
+
|
436 |
+
|
437 |
img = img.astype(np.float32)
|
438 |
img = np.transpose(img,axes=[2,0,1])
|
439 |
+
|
440 |
+
|
441 |
keypoints = item["keypoints"]
|
442 |
center = item['center']
|
443 |
other_centers = item["other_centers"]
|
444 |
other_keypoints = item["other_keypoints"]
|
445 |
+
|
446 |
+
|
447 |
kps_mask = np.ones(len(keypoints)//3)
|
448 |
for i in range(len(keypoints)//3):
|
449 |
+
##0没有标注;1有标注不可见(被遮挡);2有标注可见
|
450 |
if keypoints[i*3+2]==0:
|
451 |
kps_mask[i] = 0
|
452 |
+
|
453 |
+
|
454 |
+
|
455 |
heatmaps,sigma = label2heatmap(keypoints, other_keypoints, self.img_size) #(17, 48, 48)
|
456 |
+
|
457 |
+
|
458 |
+
|
459 |
cx = min(max(0,int(center[0]*self.img_size//4)),self.img_size//4-1)
|
460 |
cy = min(max(0,int(center[1]*self.img_size//4)),self.img_size//4-1)
|
461 |
+
|
462 |
+
|
463 |
centers = label2center(cx, cy, other_centers, self.img_size, sigma) #(1, 48, 48)
|
464 |
+
|
465 |
regs = label2reg(keypoints, cx, cy, self.img_size) #(14, 48, 48)
|
466 |
+
|
467 |
+
|
468 |
offsets = label2offset(keypoints, cx, cy, regs, self.img_size)#(14, 48, 48)
|
469 |
+
|
470 |
+
|
471 |
+
|
472 |
+
|
473 |
labels = np.concatenate([heatmaps,centers,regs,offsets],axis=0)
|
474 |
img = img / 127.5 - 1.0
|
475 |
return img, labels, kps_mask, img_path
|
476 |
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
def __len__(self):
|
481 |
return len(self.data_labels)
|
482 |
|
483 |
# Function to get data loader based on mode (e.g., evaluation)
|
484 |
def getDataLoader(mode, input_data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
|
486 |
if mode=="eval":
|
487 |
+
|
488 |
val_loader = torch.utils.data.DataLoader(
|
489 |
TensorDataset(input_data[0],
|
490 |
EVAL_IMG_PATH,
|
|
|
494 |
shuffle=False,
|
495 |
num_workers=0,
|
496 |
pin_memory=False)
|
497 |
+
|
498 |
return val_loader
|
499 |
|
500 |
# Class for managing data and obtaining evaluation data loader
|
501 |
class Data():
|
|
|
|
|
|
|
502 |
def __init__(self):
|
503 |
pass
|
504 |
|
505 |
def getEvalDataloader(self):
|
506 |
with open(EVAL_LABLE_PATH, 'r') as f:
|
507 |
data_label_list = json.loads(f.readlines()[0])
|
508 |
+
|
509 |
print("[INFO] Total images: ", len(data_label_list))
|
510 |
+
|
511 |
+
|
512 |
input_data = [data_label_list]
|
513 |
data_loader = getDataLoader("eval",
|
514 |
input_data)
|
515 |
return data_loader
|
|
|
516 |
# Configs for onnx inference session
|
517 |
def make_parser():
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
parser = argparse.ArgumentParser("movenet onnxruntime inference")
|
519 |
parser.add_argument(
|
520 |
"--ipu",
|
|
|
544 |
data_loader = data.getEvalDataloader()
|
545 |
# Load MoveNet model using ONNX runtime
|
546 |
model = rt.InferenceSession(MODEL_DIR, providers=providers, provider_options=provider_options)
|
547 |
+
|
548 |
correct = 0
|
549 |
total = 0
|
550 |
# Loop through the data loader for evaluation
|
551 |
for batch_idx, (imgs, labels, kps_mask, img_names) in enumerate(data_loader):
|
552 |
+
|
553 |
if batch_idx%100 == 0:
|
554 |
print('Finish ',batch_idx)
|
555 |
+
|
556 |
imgs = imgs.detach().cpu().numpy()
|
557 |
+
imgs = imgs.transpose((0,2,3,1))
|
558 |
+
output = model.run(['1548_transpose','1607_transpose','1665_transpose','1723_transpose'],{'blob.1':imgs})
|
559 |
+
output[0] = output[0].transpose((0,3,1,2))
|
560 |
+
output[1] = output[1].transpose((0,3,1,2))
|
561 |
+
output[2] = output[2].transpose((0,3,1,2))
|
562 |
+
output[3] = output[3].transpose((0,3,1,2))
|
563 |
pre = movenetDecode(output, kps_mask,mode='output',img_size=IMG_SIZE)
|
564 |
gt = movenetDecode(labels, kps_mask,mode='label',img_size=IMG_SIZE)
|
565 |
+
|
566 |
+
#n
|
567 |
acc = myAcc(pre, gt)
|
568 |
+
|
569 |
correct += sum(acc)
|
570 |
total += len(acc)
|
571 |
# Compute and print accuracy based on evaluated data
|
572 |
acc = correct/total
|
573 |
+
print('[Info] acc: {:.3f}% \n'.format(100. * acc))
|
movenet_int8.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
|
3 |
+
size 0
|