amd
/

timm
ONNX
PyTorch
RyzenAI
vision
classification

MNASNet_b1

Quantized MNASNet_b1 model that could be supported by AMD Ryzen AI.

Model description

MNASNet was first introduced in the paper MnasNet: Platform-Aware Neural Architecture Search for Mobile.

The model implementation is from timm.

How to use

Installation

Follow Ryzen AI Installation to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model.

pip install -r requirements.txt 

Data Preparation

Follow ImageNet to prepare dataset.

Model Evaluation

python eval_onnx.py --onnx_model mnasnet_b1_int.onnx --ipu --provider_config Path\To\vaip_config.json --data_dir /Path/To/Your/Dataset

Performance

Metric Accuracy on IPU
Top1/Top5 73.51% / 91.56%
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@inproceedings{tan2019mnasnet,
  title={Mnasnet: Platform-aware neural architecture search for mobile},
  author={Tan, Mingxing and Chen, Bo and Pang, Ruoming and Vasudevan, Vijay and Sandler, Mark and Howard, Andrew and Le, Quoc V},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  pages={2820--2828},
  year={2019}
}
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train amd/mnasnet_b1