ppo-LunarLander-v2 / config.json
amaldev024's picture
Upload PPO LunarLander-v2 trained agent
95f2bb1 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ddd6de65e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ddd6de65ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ddd6de65f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ddd6de65fc0>", "_build": "<function ActorCriticPolicy._build at 0x7ddd6de66050>", "forward": "<function ActorCriticPolicy.forward at 0x7ddd6de660e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ddd6de66170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ddd6de66200>", "_predict": "<function ActorCriticPolicy._predict at 0x7ddd6de66290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ddd6de66320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ddd6de663b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ddd6de66440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ddd6de68700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710670039906031315, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANPhAj7sxYg68Z0FvJXUrbl0XhU8nDuZugAAgD8AAIA/8w/XPYWb37lAtI+5D4DetIz0Hzu2wqo4AACAPwAAgD+az2e94RKBuj//SjoNvTQ1kM8Oux0PbbkAAIA/AACAPwBF2DxIR5e6Wo0DuVc577PiOSY6OgwYOAAAgD8AAIA/AD/9PPYgPbous1258VywNemloLvpiYI4AACAPwAAgD8z7Q48nk2zPyiS3j6vPXO+GLsBvIsZZ70AAAAAAAAAAGZLxrz23Gu6okCjOqJm87Sq5Nq6Tgq7uQAAgD8AAIA/hhePPivBRT8XuY09vXyBvvL1Lz4m8Ys7AAAAAAAAAAAAkJS6KYhGur5xmzsJxW82I1T4t4nXsLoAAIA/AACAPzOD3Ttckwm6fuxtO4mEXjjQs765cqaPuAAAgD8AAIA/GngmPT89Jz664Jk7TnxRvi7KFj3m4ps9AAAAAAAAAABmU7A9xFjAPdi3VL4CHyC+UkqIvFqhCjwAAAAAAAAAAAAXRj32RHC6HlzLuwbLGLZwOxg68siJNQAAgD8AAIA/Zsr0O1yLDroLLSe7b3gNttyQkztKcUQ6AACAPwAAgD8Ah7U8UvC/uU0VWrsXCIa21YLju3NxgzoAAIA/AACAP8D9zD1cYzm6K+SYu6fflzg8IpI7hoCBOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOIYqgAZKqMAWyUTegDjAF0lEdAl0LsjAzpHXV9lChoBkdAYxeKWLP2PGgHTegDaAhHQJdG8ihWYF91fZQoaAZHQGOgCOWBz3hoB03oA2gIR0CXSpSOR1YAdX2UKGgGR0Blg/8/D+BIaAdN6ANoCEdAl0wnN1QqJHV9lChoBkdAYXH4j8k2P2gHTegDaAhHQJdMQN2C/XZ1fZQoaAZHQGIMEOZssQNoB03oA2gIR0CXTfwFTvRadX2UKGgGR0Bfp8bJfYz0aAdN6ANoCEdAl06gF5fMOnV9lChoBkdAYeO67ulXR2gHTegDaAhHQJdX2ZF5Oah1fZQoaAZHQGik86NlyzZoB03oA2gIR0CXWFnFo+OfdX2UKGgGR0Bguw2ETQE7aAdN6ANoCEdAl1kAzDXOGHV9lChoBkdARml74SHuZ2gHS+ZoCEdAl3lHocJdB3V9lChoBkdAYu0HhS9/SmgHTegDaAhHQJd98GIKtxN1fZQoaAZHQGGySnk1dgRoB03oA2gIR0CXgbcUdq+KdX2UKGgGR0BmvB+DvmYCaAdN6ANoCEdAl4J8TWXkYHV9lChoBkdAYxRLGrCFbmgHTegDaAhHQJeE/1ZkkKN1fZQoaAZHQGm+ex4Y77toB03oA2gIR0CXhbHwPRRedX2UKGgGR0BlE3tQbdadaAdN6ANoCEdAl5Ci0v4/NnV9lChoBkdAY+DRUFSsKmgHTegDaAhHQJeQrz7MxGl1fZQoaAZHQGPviKR+z+poB03oA2gIR0CXl4JYDDCQdX2UKGgGR0Bgl6LbYbsGaAdN6ANoCEdAl5ugqmTC+HV9lChoBkdAY2GbtqpLmWgHTegDaAhHQJedd14gRsd1fZQoaAZHQGWKffXPJJZoB03oA2gIR0CXnZU0Nz8xdX2UKGgGR0BmSnjyWiUQaAdN6ANoCEdAl5+NznzQNXV9lChoBkdAZGyUh3aBZ2gHTegDaAhHQJegMWZZ0S11fZQoaAZHQGd/GXw9aEBoB03oA2gIR0CXqnZCOWB0dX2UKGgGR0Bi03CGetjkaAdN6ANoCEdAl6srRF7UonV9lChoBkdAUaVAeJYT02gHS+FoCEdAl6xUTURWcXV9lChoBkdAYataTwDvE2gHTegDaAhHQJfL5mqYJE91fZQoaAZHQGMOxRVIZqFoB03oA2gIR0CXz510knkUdX2UKGgGR0BldIXXRPXTaAdN6ANoCEdAl9KI0ygwoXV9lChoBkdAYcfFBIFvAGgHTegDaAhHQJfTGH/Lkjp1fZQoaAZHQGZJUNKAavRoB03oA2gIR0CX1N6Z6UqydX2UKGgGR0Bl6EBuGbkPaAdN6ANoCEdAl9Vfxx1gY3V9lChoBkdAZThollbu+mgHTegDaAhHQJfdqTKT0QN1fZQoaAZHQGWEoeHSF49oB03oA2gIR0CX3atT1kDqdX2UKGgGR0BdY3Pu5SWJaAdN6ANoCEdAl+F8dgfEGnV9lChoBkdAZfYlhPTG52gHTegDaAhHQJfk90hePaN1fZQoaAZHQGZbxptaY/poB03oA2gIR0CX5qR/EwWWdX2UKGgGR0BmYrSy+pOvaAdN6ANoCEdAl+bKpPykK3V9lChoBkdAYhn5ZbILgGgHTegDaAhHQJfogYYR/Vl1fZQoaAZHQE9twyZa3ZxoB0v/aAhHQJfp43eenQ91fZQoaAZHQGbx8+RoysVoB03oA2gIR0CX89RWtEG8dX2UKGgGR0BoUOP5pJwsaAdN6ANoCEdAl/TkZrHlwXV9lChoBkdAZ92TpxFRYWgHTegDaAhHQJf2cMLF4s51fZQoaAZHQGQ/FbmlqJxoB03oA2gIR0CYFaB2OhkBdX2UKGgGR0Bm0YxDb8FZaAdN6ANoCEdAmBkit7rs0HV9lChoBkdAYoROgQHzH2gHTegDaAhHQJgb3kQwsXl1fZQoaAZHQGgmLD63y7RoB03oA2gIR0CYHGWS2Yv4dX2UKGgGR0Bh/dHlOoHcaAdN6ANoCEdAmB4mXXyy2XV9lChoBkdAZNNxYq5LAmgHTegDaAhHQJgeqWjXWe91fZQoaAZHQGWMW4mTkhloB03oA2gIR0CYKF1jiGWVdX2UKGgGR0BiY/z8P4EfaAdN6ANoCEdAmC1ZSR8tw3V9lChoBkdAXUbCsOoYN2gHTegDaAhHQJgxK3b212J1fZQoaAZHQGgEhlUZNwloB03oA2gIR0CYMu9bor4GdX2UKGgGR0BlKH7YTTOPaAdN6ANoCEdAmDMLlaKUFHV9lChoBkdAZxB91loUSWgHTegDaAhHQJg05f2K2rp1fZQoaAZHQGELbLt/nW9oB03oA2gIR0CYNn18b70ndX2UKGgGR0AywgHu7YkFaAdL62gIR0CYOU9ZRsMzdX2UKGgGR0BD7F72L5ymaAdL2GgIR0CYPU+UhV2idX2UKGgGR0Bn6kunMt9QaAdN6ANoCEdAmD7C9VWCE3V9lChoBkdAY0199+gDimgHTegDaAhHQJg/VkWhysF1fZQoaAZHQF/fTW5H3DhoB03oA2gIR0CYQDZPEbYLdX2UKGgGR0Bid9aIN3GGaAdN6ANoCEdAmF3CAQQL/nV9lChoBkdAKUZvDP4VRGgHTQcBaAhHQJhg7t3OfNB1fZQoaAZHQHEMLaufVZtoB02zA2gIR0CYYXum78NydX2UKGgGR0BhqiJj2BataAdN6ANoCEdAmGGMIVuaW3V9lChoBkdAY0/qM3qA0GgHTegDaAhHQJhk2GnGbTd1fZQoaAZHQGTlKI7/4qRoB03oA2gIR0CYZr5HVf/ndX2UKGgGR0Bk8ld7fHghaAdN6ANoCEdAmGdE7CBPK3V9lChoBkdARdORzRx95WgHS+xoCEdAmG2IsRQJonV9lChoBkdAZ9rO9FnZkGgHTegDaAhHQJhwNy6tknV1fZQoaAZHQGaOpF1B+nZoB03oA2gIR0CYeSBbOeJ6dX2UKGgGR0Bko9uNxVABaAdN6ANoCEdAmHs7yxzJZHV9lChoBkdAY/2QNCqp+GgHTegDaAhHQJh9gXSBshx1fZQoaAZHQGPIWCNCJGhoB03oA2gIR0CYf11f3N9qdX2UKGgGR0Bj7nkaMrEtaAdN6ANoCEdAmINibc45tHV9lChoBkdAZlVfeDWbw2gHTegDaAhHQJiJwUrTYul1fZQoaAZHQGb3A2hqTKVoB03oA2gIR0CYi6PnjhkzdX2UKGgGR0Bl4GT1TR6XaAdN6ANoCEdAmI1Sliz9j3V9lChoBkdAYf63/giu+2gHTegDaAhHQJip5yJbdJt1fZQoaAZHQGCvS3Td+G5oB03oA2gIR0CYrV7jT8YRdX2UKGgGR0BbTMgdOqNqaAdN6ANoCEdAmK33752yLXV9lChoBkdAZ6Z04iosI2gHTegDaAhHQJixy8wpON51fZQoaAZHQGP/1M23rlhoB03oA2gIR0CYtH2itaIOdX2UKGgGR0Boa/6hxo7FaAdN6ANoCEdAmLVpPZZjhHV9lChoBkdAcjDfCyhSL2gHTcoBaAhHQJi3tU3n6mB1fZQoaAZHQF6AWLgn+hpoB03oA2gIR0CYvZjFAE+xdX2UKGgGR0BC3mlqJuVHaAdL+mgIR0CYvcF10T11dX2UKGgGR0BiADdFfAsTaAdN6ANoCEdAmMAyhnJ1aHV9lChoBkdAbTIYGdI5HWgHTeEDaAhHQJjIbjGT9sJ1fZQoaAZHQGeG+eOGTLZoB03oA2gIR0CYysyB06o3dX2UKGgGR0Bl8970Fr2yaAdN6ANoCEdAmMzlnM+u/3V9lChoBkdAZTDmlImPYGgHTegDaAhHQJjOr1K5Cnh1fZQoaAZHQHLRUEHMUypoB00CAmgIR0CY0LB+WnjydX2UKGgGR0Bg6QeV9nbqaAdN6ANoCEdAmNH+HFglW3V9lChoBkdAcnGDYAbQ1WgHTQsCaAhHQJjTJ+Zw4sF1fZQoaAZHQGJUlyimEXdoB03oA2gIR0CY1/LF4s3AdX2UKGgGR0BlrxP420iRaAdN6ANoCEdAmNmViBoVVXV9lChoBkdAJ6oc7yQPqmgHS/1oCEdAmN9fu9eyA3V9lChoBkdAZPkaOxSpBGgHTegDaAhHQJjkWdmQKa51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}