Disclaimer: I do not own the weights of WizardLM-13B-V1.2, nor did I train the model. I only sharded or split the model weights.

The actual weights can be found here.

The rest of the README is copied from the same page listed above.

This is the Full-Weight of WizardLM-13B V1.2 model, this model is trained from Llama-2 13b.

WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions

πŸ€— HF Repo β€’ 🐦 Twitter β€’ πŸ“ƒ [WizardLM] β€’ πŸ“ƒ [WizardCoder]

πŸ‘‹ Join our Discord

Model Checkpoint Paper MT-Bench AlpacaEval WizardEval HumanEval License
WizardLM-13B-V1.2 πŸ€— HF Link 7.06 89.17% 101.4% 36.6 pass@1 Llama 2 License
WizardLM-13B-V1.1 πŸ€— HF Link 6.76 86.32% 99.3% 25.0 pass@1 Non-commercial
WizardLM-30B-V1.0 πŸ€— HF Link 7.01 97.8% 37.8 pass@1 Non-commercial
WizardLM-13B-V1.0 πŸ€— HF Link 6.35 75.31% 89.1% 24.0 pass@1 Non-commercial
WizardLM-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardLM] 78.0% 19.1 pass@1 Non-commercial
WizardCoder-15B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 57.3 pass@1 OpenRAIL-M

Repository: https://github.com/nlpxucan/WizardLM

Twitter:

❗Note for model system prompts usage:

WizardLM adopts the prompt format from Vicuna and supports multi-turn conversation. The prompt should be as following:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
USER: Hi
ASSISTANT: Hello.
USER: Who are you?
ASSISTANT: I am WizardLM.
......

❗To commen concern about dataset:

Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models.

Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team .

Our researchers have no authority to publicly release them without authorization.

Thank you for your understanding.

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.