These are the model weights for EraseDraw.
![Sample Overview](https://erasedraw.cs.columbia.edu/static/img/samples_overview.png)
To use this model, install diffusers using main for now. The API is the same as that of InstructPix2Pix
pip install diffusers accelerate safetensors transformers
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
model_id = "alpercanberk/erasedraw"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
url = "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(url)
prompt = "add sunglasses"
images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1).images
images[0]
Code and data are coming soon to GitHub (find link on website) .
- Downloads last month
- 252
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.