|
--- |
|
language: fr |
|
--- |
|
|
|
# CamemBERT: a Tasty French Language Model |
|
|
|
## Introduction |
|
|
|
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. |
|
|
|
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. |
|
|
|
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) |
|
|
|
## Pre-trained models |
|
|
|
| Model | #params | Arch. | Training data | |
|
|--------------------------------|--------------------------------|-------|-----------------------------------| |
|
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) | |
|
| `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | |
|
| `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | |
|
| `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | |
|
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | |
|
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | |
|
|
|
## How to use CamemBERT with HuggingFace |
|
|
|
##### Load CamemBERT and its sub-word tokenizer : |
|
```python |
|
from transformers import CamembertModel, CamembertTokenizer |
|
|
|
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". |
|
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-oscar-4gb") |
|
camembert = CamembertModel.from_pretrained("camembert/camembert-base-oscar-4gb") |
|
|
|
camembert.eval() # disable dropout (or leave in train mode to finetune) |
|
|
|
``` |
|
|
|
##### Filling masks using pipeline |
|
```python |
|
from transformers import pipeline |
|
|
|
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-oscar-4gb", tokenizer="camembert/camembert-base-oscar-4gb") |
|
>>> results = camembert_fill_mask("Le camembert est <mask> !") |
|
# results |
|
#[{'sequence': '<s> Le camembert est parfait!</s>', 'score': 0.04089554399251938, 'token': 1654}, |
|
#{'sequence': '<s> Le camembert est délicieux!</s>', 'score': 0.037193264812231064, 'token': 7200}, |
|
#{'sequence': '<s> Le camembert est prêt!</s>', 'score': 0.025467922911047935, 'token': 1415}, |
|
#{'sequence': '<s> Le camembert est meilleur!</s>', 'score': 0.022812040522694588, 'token': 528}, |
|
#{'sequence': '<s> Le camembert est différent!</s>', 'score': 0.017135459929704666, 'token': 2935}] |
|
|
|
``` |
|
|
|
##### Extract contextual embedding features from Camembert output |
|
```python |
|
import torch |
|
# Tokenize in sub-words with SentencePiece |
|
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") |
|
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] |
|
|
|
# 1-hot encode and add special starting and end tokens |
|
encoded_sentence = tokenizer.encode(tokenized_sentence) |
|
# [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6] |
|
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !") |
|
|
|
# Feed tokens to Camembert as a torch tensor (batch dim 1) |
|
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) |
|
embeddings, _ = camembert(encoded_sentence) |
|
# embeddings.detach() |
|
# embeddings.size torch.Size([1, 10, 768]) |
|
#tensor([[[-0.1120, -0.1464, 0.0181, ..., -0.1723, -0.0278, 0.1606], |
|
# [ 0.1234, 0.1202, -0.0773, ..., -0.0405, -0.0668, -0.0788], |
|
# [-0.0440, 0.0480, -0.1926, ..., 0.1066, -0.0961, 0.0637], |
|
# ..., |
|
``` |
|
|
|
##### Extract contextual embedding features from all Camembert layers |
|
```python |
|
from transformers import CamembertConfig |
|
# (Need to reload the model with new config) |
|
config = CamembertConfig.from_pretrained("camembert/camembert-base-oscar-4gb", output_hidden_states=True) |
|
camembert = CamembertModel.from_pretrained("camembert/camembert-base-oscar-4gb", config=config) |
|
|
|
embeddings, _, all_layer_embeddings = camembert(encoded_sentence) |
|
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) |
|
all_layer_embeddings[5] |
|
# layer 5 contextual embedding : size torch.Size([1, 10, 768]) |
|
#tensor([[[-0.1584, -0.1207, -0.0179, ..., 0.5457, 0.1491, -0.1191], |
|
# [-0.1122, 0.3634, 0.0676, ..., 0.4395, -0.0470, -0.3781], |
|
# [-0.2232, 0.0019, 0.0140, ..., 0.4461, -0.0233, 0.0735], |
|
# ..., |
|
``` |
|
|
|
|
|
## Authors |
|
|
|
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. |
|
|
|
|
|
## Citation |
|
If you use our work, please cite: |
|
|
|
```bibtex |
|
@inproceedings{martin2020camembert, |
|
title={CamemBERT: a Tasty French Language Model}, |
|
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, |
|
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, |
|
year={2020} |
|
} |
|
``` |
|
|