|
import math |
|
from typing import List, Optional |
|
import json |
|
import torch |
|
import torchvision |
|
|
|
from threading import Thread |
|
from copy import deepcopy |
|
from PIL import Image |
|
from transformers import AutoProcessor, Qwen2PreTrainedModel, Qwen2ForCausalLM, TextIteratorStreamer |
|
|
|
from .configuration_minicpm import MiniCPMVConfig |
|
from .modeling_navit_siglip import SiglipVisionTransformer |
|
from .resampler import Resampler |
|
|
|
|
|
|
|
class MiniCPMVPreTrainedModel(Qwen2PreTrainedModel): |
|
config_class = MiniCPMVConfig |
|
|
|
|
|
class MiniCPMV(MiniCPMVPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.llm = Qwen2ForCausalLM(config) |
|
self.vpm = self.init_vision_module() |
|
self.vision_dim = self.vpm.embed_dim |
|
self.embed_dim = self.llm.config.hidden_size |
|
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim) |
|
self.processor = None |
|
|
|
self.terminators = ['<|im_end|>', '<|endoftext|>'] |
|
|
|
def init_vision_module(self): |
|
|
|
if self.config._attn_implementation == 'flash_attention_2': |
|
self.config.vision_config._attn_implementation = 'flash_attention_2' |
|
else: |
|
|
|
self.config.vision_config._attn_implementation = 'eager' |
|
model = SiglipVisionTransformer(self.config.vision_config) |
|
if self.config.drop_vision_last_layer: |
|
model.encoder.layers = model.encoder.layers[:-1] |
|
|
|
setattr(model, 'embed_dim', model.embeddings.embed_dim) |
|
setattr(model, 'patch_size', model.embeddings.patch_size) |
|
|
|
return model |
|
|
|
def init_resampler(self, embed_dim, vision_dim): |
|
return Resampler( |
|
num_queries=self.config.query_num, |
|
embed_dim=embed_dim, |
|
num_heads=embed_dim // 128, |
|
kv_dim=vision_dim, |
|
adaptive=True |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.llm.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.llm.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.llm.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.llm.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.llm = decoder |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
if past_key_values is not None: |
|
if inputs_embeds is not None: |
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
input_ids = input_ids[:, cache_position] |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
position_ids = position_ids.clone(memory_format=torch.contiguous_format) |
|
|
|
|
|
if inputs_embeds is not None and cache_position[0] == 0: |
|
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} |
|
else: |
|
|
|
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} |
|
|
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
def get_decoder(self): |
|
return self.llm |
|
|
|
def get_vllm_embedding(self, data): |
|
if 'vision_hidden_states' not in data: |
|
dtype = self.llm.model.embed_tokens.weight.dtype |
|
device = self.llm.model.embed_tokens.weight.device |
|
tgt_sizes = data['tgt_sizes'] |
|
pixel_values_list = data['pixel_values'] |
|
vision_hidden_states = [] |
|
all_pixel_values = [] |
|
img_cnt = [] |
|
for pixel_values in pixel_values_list: |
|
img_cnt.append(len(pixel_values)) |
|
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values]) |
|
|
|
|
|
if all_pixel_values: |
|
tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)] |
|
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32) |
|
|
|
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1]) |
|
|
|
all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True, |
|
padding_value=0.0) |
|
B, L, _ = all_pixel_values.shape |
|
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) |
|
|
|
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device) |
|
for i in range(B): |
|
patch_attn_mask[i, 0, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True |
|
|
|
vision_batch_size = self.config.vision_batch_size |
|
all_pixel_values = all_pixel_values.type(dtype) |
|
if B > vision_batch_size: |
|
hs = [] |
|
for i in range(0, B, vision_batch_size): |
|
start_idx = i |
|
end_idx = i + vision_batch_size |
|
tmp_hs = self.vpm(all_pixel_values[start_idx:end_idx], patch_attention_mask=patch_attn_mask[start_idx:end_idx], tgt_sizes=tgt_sizes[start_idx:end_idx]).last_hidden_state |
|
hs.append(tmp_hs) |
|
vision_embedding = torch.cat(hs, dim=0) |
|
else: |
|
vision_embedding = self.vpm(all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes).last_hidden_state |
|
vision_embedding = self.resampler(vision_embedding, tgt_sizes) |
|
|
|
start = 0 |
|
for pixel_values in pixel_values_list: |
|
img_cnt = len(pixel_values) |
|
if img_cnt > 0: |
|
vision_hidden_states.append(vision_embedding[start: start + img_cnt]) |
|
start += img_cnt |
|
else: |
|
vision_hidden_states.append([]) |
|
else: |
|
if self.training: |
|
dummy_image = torch.zeros( |
|
(1, 3, 224, 224), |
|
device=device, dtype=dtype |
|
) |
|
tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32) |
|
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes) |
|
else: |
|
dummy_feature = [] |
|
for _ in range(len(pixel_values_list)): |
|
vision_hidden_states.append(dummy_feature) |
|
|
|
else: |
|
vision_hidden_states = data['vision_hidden_states'] |
|
|
|
if hasattr(self.llm.config, 'scale_emb'): |
|
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb |
|
else: |
|
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) |
|
|
|
vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance( |
|
i, torch.Tensor) else i for i in vision_hidden_states] |
|
|
|
bs = len(data['input_ids']) |
|
for i in range(bs): |
|
cur_vs_hs = vision_hidden_states[i] |
|
if len(cur_vs_hs) > 0: |
|
cur_vllm_emb = vllm_embedding[i] |
|
cur_image_bound = data['image_bound'][i] |
|
if len(cur_image_bound) > 0: |
|
image_indices = torch.stack( |
|
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound] |
|
).to(vllm_embedding.device) |
|
|
|
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]), |
|
cur_vs_hs.view(-1, cur_vs_hs.shape[-1])) |
|
elif self.training: |
|
cur_vllm_emb += cur_vs_hs[0].mean() * 0 |
|
|
|
return vllm_embedding, vision_hidden_states |
|
|
|
def forward(self, data, **kwargs): |
|
if isinstance(data, torch.Tensor): |
|
return self.llm( |
|
input_ids=data, |
|
**kwargs |
|
) |
|
else: |
|
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data) |
|
position_ids = data["position_ids"] |
|
if position_ids.dtype != torch.int64: |
|
position_ids = position_ids.long() |
|
|
|
return self.llm( |
|
input_ids=None, |
|
position_ids=position_ids, |
|
inputs_embeds=vllm_embedding, |
|
**kwargs |
|
) |
|
|
|
def _decode(self, inputs_embeds, tokenizer, attention_mask, decode_text=False, **kwargs): |
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] |
|
output = self.llm.generate( |
|
inputs_embeds=inputs_embeds, |
|
pad_token_id=0, |
|
eos_token_id=terminators, |
|
attention_mask=attention_mask, |
|
**kwargs |
|
) |
|
if decode_text: |
|
return self._decode_text(output, tokenizer) |
|
return output |
|
|
|
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs): |
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] |
|
streamer = TextIteratorStreamer(tokenizer=tokenizer) |
|
generation_kwargs = { |
|
'inputs_embeds': inputs_embeds, |
|
'pad_token_id': 0, |
|
'eos_token_id': terminators, |
|
'streamer': streamer |
|
} |
|
generation_kwargs.update(kwargs) |
|
|
|
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
return streamer |
|
|
|
def _decode_text(self, result_ids, tokenizer): |
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] |
|
result_text = [] |
|
for result in result_ids: |
|
result = result[result != 0] |
|
if result[0] == tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] in terminators: |
|
result = result[:-1] |
|
result_text.append(tokenizer.decode(result).strip()) |
|
return result_text |
|
|
|
def generate( |
|
self, |
|
input_ids=None, |
|
pixel_values=None, |
|
tgt_sizes=None, |
|
image_bound=None, |
|
attention_mask=None, |
|
tokenizer=None, |
|
vision_hidden_states=None, |
|
return_vision_hidden_states=False, |
|
stream=False, |
|
decode_text=False, |
|
**kwargs |
|
): |
|
assert input_ids is not None |
|
assert len(input_ids) == len(pixel_values) |
|
|
|
model_inputs = { |
|
"input_ids": input_ids, |
|
"image_bound": image_bound, |
|
} |
|
|
|
if vision_hidden_states is None: |
|
model_inputs["pixel_values"] = pixel_values |
|
model_inputs['tgt_sizes'] = tgt_sizes |
|
else: |
|
model_inputs["vision_hidden_states"] = vision_hidden_states |
|
|
|
with torch.inference_mode(): |
|
( |
|
model_inputs["inputs_embeds"], |
|
vision_hidden_states, |
|
) = self.get_vllm_embedding(model_inputs) |
|
|
|
if stream: |
|
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs) |
|
else: |
|
result = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, decode_text=decode_text, **kwargs) |
|
|
|
if return_vision_hidden_states: |
|
return result, vision_hidden_states |
|
|
|
return result |
|
|
|
def chat( |
|
self, |
|
image, |
|
msgs, |
|
tokenizer, |
|
processor=None, |
|
vision_hidden_states=None, |
|
max_new_tokens=2048, |
|
min_new_tokens=0, |
|
sampling=True, |
|
max_inp_length=8192, |
|
system_prompt='', |
|
stream=False, |
|
max_slice_nums=None, |
|
use_image_id=None, |
|
**kwargs |
|
): |
|
if isinstance(msgs[0], list): |
|
batched = True |
|
else: |
|
batched = False |
|
msgs_list = msgs |
|
images_list = image |
|
|
|
if batched is False: |
|
images_list, msgs_list = [images_list], [msgs_list] |
|
else: |
|
assert images_list is None, "Please integrate image to msgs when using batch inference." |
|
images_list = [None] * len(msgs_list) |
|
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same." |
|
|
|
if processor is None: |
|
if self.processor is None: |
|
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True) |
|
processor = self.processor |
|
|
|
assert self.config.query_num == processor.image_processor.image_feature_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." |
|
assert self.config.patch_size == processor.image_processor.patch_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." |
|
assert self.config.use_image_id == processor.image_processor.use_image_id, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." |
|
assert self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." |
|
assert self.config.slice_mode == processor.image_processor.slice_mode, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." |
|
|
|
prompts_lists = [] |
|
input_images_lists = [] |
|
for image, msgs in zip(images_list, msgs_list): |
|
if isinstance(msgs, str): |
|
msgs = json.loads(msgs) |
|
copy_msgs = deepcopy(msgs) |
|
|
|
assert len(msgs) > 0, "msgs is empty" |
|
assert sampling or not stream, "if use stream mode, make sure sampling=True" |
|
|
|
if image is not None and isinstance(copy_msgs[0]["content"], str): |
|
copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]] |
|
|
|
images = [] |
|
for i, msg in enumerate(copy_msgs): |
|
role = msg["role"] |
|
content = msg["content"] |
|
assert role in ["user", "assistant"] |
|
if i == 0: |
|
assert role == "user", "The role of first msg should be user" |
|
if isinstance(content, str): |
|
content = [content] |
|
cur_msgs = [] |
|
for c in content: |
|
if isinstance(c, Image.Image): |
|
images.append(c) |
|
cur_msgs.append("(<image>./</image>)") |
|
elif isinstance(c, str): |
|
cur_msgs.append(c) |
|
msg["content"] = "\n".join(cur_msgs) |
|
|
|
if system_prompt: |
|
sys_msg = {'role': 'system', 'content': system_prompt} |
|
copy_msgs = [sys_msg] + copy_msgs |
|
|
|
prompts_lists.append(processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True)) |
|
input_images_lists.append(images) |
|
|
|
inputs = processor( |
|
prompts_lists, |
|
input_images_lists, |
|
max_slice_nums=max_slice_nums, |
|
use_image_id=use_image_id, |
|
return_tensors="pt", |
|
max_length=max_inp_length |
|
).to(self.device) |
|
|
|
if sampling: |
|
generation_config = { |
|
"top_p": 0.8, |
|
"top_k": 100, |
|
"temperature": 0.7, |
|
"do_sample": True, |
|
"repetition_penalty": 1.05 |
|
} |
|
else: |
|
generation_config = { |
|
"num_beams": 3, |
|
"repetition_penalty": 1.2, |
|
} |
|
|
|
if min_new_tokens > 0: |
|
generation_config['min_new_tokens'] = min_new_tokens |
|
|
|
generation_config.update( |
|
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys() |
|
) |
|
|
|
inputs.pop("image_sizes") |
|
with torch.inference_mode(): |
|
res = self.generate( |
|
**inputs, |
|
tokenizer=tokenizer, |
|
max_new_tokens=max_new_tokens, |
|
vision_hidden_states=vision_hidden_states, |
|
stream=stream, |
|
decode_text=True, |
|
**generation_config |
|
) |
|
|
|
if stream: |
|
def stream_gen(): |
|
for text in res: |
|
for term in self.terminators: |
|
text = text.replace(term, '') |
|
yield text |
|
return stream_gen() |
|
|
|
else: |
|
if batched: |
|
answer = res |
|
else: |
|
answer = res[0] |
|
return answer |
|
|