File size: 18,461 Bytes
0e88af3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import math
from typing import List, Optional
import json
import torch
import torchvision

from threading import Thread
from copy import deepcopy
from PIL import Image
from transformers import AutoProcessor, Qwen2PreTrainedModel, Qwen2ForCausalLM, TextIteratorStreamer

from .configuration_minicpm import MiniCPMVConfig
from .modeling_navit_siglip import SiglipVisionTransformer
from .resampler import Resampler



class MiniCPMVPreTrainedModel(Qwen2PreTrainedModel):
    config_class = MiniCPMVConfig


class MiniCPMV(MiniCPMVPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.llm = Qwen2ForCausalLM(config)
        self.vpm = self.init_vision_module()
        self.vision_dim = self.vpm.embed_dim
        self.embed_dim = self.llm.config.hidden_size
        self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
        self.processor = None

        self.terminators = ['<|im_end|>', '<|endoftext|>']

    def init_vision_module(self):
        # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
        if self.config._attn_implementation == 'flash_attention_2':
            self.config.vision_config._attn_implementation = 'flash_attention_2'
        else:
            # not suport sdpa
            self.config.vision_config._attn_implementation = 'eager'
        model = SiglipVisionTransformer(self.config.vision_config)
        if self.config.drop_vision_last_layer:
            model.encoder.layers = model.encoder.layers[:-1]

        setattr(model, 'embed_dim', model.embeddings.embed_dim)
        setattr(model, 'patch_size', model.embeddings.patch_size)

        return model

    def init_resampler(self, embed_dim, vision_dim):
        return Resampler(
            num_queries=self.config.query_num,
            embed_dim=embed_dim,
            num_heads=embed_dim // 128,
            kv_dim=vision_dim,
            adaptive=True
        )

    def get_input_embeddings(self):
        return self.llm.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.llm.embed_tokens = value

    def get_output_embeddings(self):
        return self.llm.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.llm.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.llm = decoder
    
    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        **kwargs,
    ):
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

                # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
                position_ids = position_ids.clone(memory_format=torch.contiguous_format)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and cache_position[0] == 0:
            model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
        else:
            # The clone here is for the same reason as for `position_ids`.
            model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
    

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
            }
        )
        return model_inputs
    def get_decoder(self):
        return self.llm

    def get_vllm_embedding(self, data):
        if 'vision_hidden_states' not in data:
            dtype = self.llm.model.embed_tokens.weight.dtype
            device = self.llm.model.embed_tokens.weight.device
            tgt_sizes = data['tgt_sizes']
            pixel_values_list = data['pixel_values']
            vision_hidden_states = []
            all_pixel_values = []
            img_cnt = []
            for pixel_values in pixel_values_list:
                img_cnt.append(len(pixel_values))
                all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])

            # exist image
            if all_pixel_values:
                tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
                tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)

                max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])

                all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
                                                                   padding_value=0.0)
                B, L, _ = all_pixel_values.shape
                all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)

                patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
                for i in range(B):
                    patch_attn_mask[i, 0, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True

                vision_batch_size = self.config.vision_batch_size
                all_pixel_values = all_pixel_values.type(dtype)
                if B > vision_batch_size:
                    hs = []
                    for i in range(0, B, vision_batch_size):
                        start_idx = i
                        end_idx = i + vision_batch_size
                        tmp_hs = self.vpm(all_pixel_values[start_idx:end_idx], patch_attention_mask=patch_attn_mask[start_idx:end_idx], tgt_sizes=tgt_sizes[start_idx:end_idx]).last_hidden_state
                        hs.append(tmp_hs)
                    vision_embedding = torch.cat(hs, dim=0)
                else:
                    vision_embedding = self.vpm(all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes).last_hidden_state
                vision_embedding = self.resampler(vision_embedding, tgt_sizes)

                start = 0
                for pixel_values in pixel_values_list:
                    img_cnt = len(pixel_values)
                    if img_cnt > 0:
                        vision_hidden_states.append(vision_embedding[start: start + img_cnt])
                        start += img_cnt
                    else:
                        vision_hidden_states.append([])
            else: # no image
                if self.training:
                    dummy_image = torch.zeros(
                        (1, 3, 224, 224),
                        device=device, dtype=dtype
                    )
                    tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
                    dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
                else:
                    dummy_feature = []
                for _ in range(len(pixel_values_list)):
                    vision_hidden_states.append(dummy_feature)

        else:
            vision_hidden_states = data['vision_hidden_states']

        if hasattr(self.llm.config, 'scale_emb'):
            vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
        else:
            vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])

        vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
            i, torch.Tensor) else i for i in vision_hidden_states]

        bs = len(data['input_ids'])
        for i in range(bs):
            cur_vs_hs = vision_hidden_states[i]
            if len(cur_vs_hs) > 0:
                cur_vllm_emb = vllm_embedding[i]
                cur_image_bound = data['image_bound'][i]
                if len(cur_image_bound) > 0:
                    image_indices = torch.stack(
                        [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
                    ).to(vllm_embedding.device)

                    cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
                                          cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
                elif self.training:
                    cur_vllm_emb += cur_vs_hs[0].mean() * 0

        return vllm_embedding, vision_hidden_states

    def forward(self, data, **kwargs):
        if isinstance(data, torch.Tensor):
            return self.llm(
            input_ids=data,
            **kwargs
        )
        else:
            vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
            position_ids = data["position_ids"]
            if position_ids.dtype != torch.int64:
                position_ids = position_ids.long()

            return self.llm(
                input_ids=None,
                position_ids=position_ids,
                inputs_embeds=vllm_embedding,
                **kwargs
            )
    
    def _decode(self, inputs_embeds, tokenizer, attention_mask, decode_text=False, **kwargs):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        output = self.llm.generate(
            inputs_embeds=inputs_embeds,
            pad_token_id=0,
            eos_token_id=terminators,
            attention_mask=attention_mask,
            **kwargs
        )
        if decode_text:
            return self._decode_text(output, tokenizer)
        return output

    def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        streamer = TextIteratorStreamer(tokenizer=tokenizer)
        generation_kwargs = {
            'inputs_embeds': inputs_embeds,
            'pad_token_id': 0,
            'eos_token_id': terminators,
            'streamer': streamer
        }
        generation_kwargs.update(kwargs)

        thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
        thread.start()
    
        return streamer

    def _decode_text(self, result_ids, tokenizer):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        result_text = []
        for result in result_ids:
            result = result[result != 0]
            if result[0] == tokenizer.bos_id:
                result = result[1:]
            if result[-1] in terminators:
                result = result[:-1]
            result_text.append(tokenizer.decode(result).strip())
        return result_text

    def generate(
        self,
        input_ids=None,
        pixel_values=None,
        tgt_sizes=None,
        image_bound=None,
        attention_mask=None,
        tokenizer=None,
        vision_hidden_states=None,
        return_vision_hidden_states=False,
        stream=False,
        decode_text=False,
        **kwargs
    ):
        assert input_ids is not None
        assert len(input_ids) == len(pixel_values)

        model_inputs = {
            "input_ids": input_ids,
            "image_bound": image_bound,
        }

        if vision_hidden_states is None:
            model_inputs["pixel_values"] = pixel_values
            model_inputs['tgt_sizes'] = tgt_sizes
        else:
            model_inputs["vision_hidden_states"] = vision_hidden_states

        with torch.inference_mode():
            (
                model_inputs["inputs_embeds"],
                vision_hidden_states,
            ) = self.get_vllm_embedding(model_inputs)

            if stream:
                result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
            else:
                result = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, decode_text=decode_text, **kwargs)

        if return_vision_hidden_states:
            return result, vision_hidden_states
        
        return result

    def chat(
        self,
        image,
        msgs,
        tokenizer,
        processor=None,
        vision_hidden_states=None,
        max_new_tokens=2048,
        min_new_tokens=0,
        sampling=True,
        max_inp_length=8192,
        system_prompt='',
        stream=False,
        max_slice_nums=None,
        use_image_id=None,
        **kwargs
    ):
        if isinstance(msgs[0], list):
            batched = True
        else:
            batched = False
        msgs_list = msgs
        images_list = image
        
        if batched is False:
            images_list, msgs_list = [images_list], [msgs_list]
        else:
            assert images_list is None, "Please integrate image to msgs when using batch inference."
            images_list = [None] * len(msgs_list)
        assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."

        if processor is None:
            if self.processor is None:
                self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
            processor = self.processor
        
        assert self.config.query_num == processor.image_processor.image_feature_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert self.config.patch_size == processor.image_processor.patch_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert self.config.use_image_id == processor.image_processor.use_image_id, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert self.config.slice_mode == processor.image_processor.slice_mode, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."

        prompts_lists = []
        input_images_lists = []
        for image, msgs in zip(images_list, msgs_list):
            if isinstance(msgs, str):
                msgs = json.loads(msgs)
            copy_msgs = deepcopy(msgs)

            assert len(msgs) > 0, "msgs is empty"
            assert sampling or not stream, "if use stream mode, make sure sampling=True"

            if image is not None and isinstance(copy_msgs[0]["content"], str):
                copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]

            images = []
            for i, msg in enumerate(copy_msgs):
                role = msg["role"]
                content = msg["content"]
                assert role in ["user", "assistant"]
                if i == 0:
                    assert role == "user", "The role of first msg should be user"
                if isinstance(content, str):
                    content = [content]
                cur_msgs = []
                for c in content:
                    if isinstance(c, Image.Image):
                        images.append(c)
                        cur_msgs.append("(<image>./</image>)")
                    elif isinstance(c, str):
                        cur_msgs.append(c)
                msg["content"] = "\n".join(cur_msgs)

            if system_prompt:
                sys_msg = {'role': 'system', 'content': system_prompt}
                copy_msgs = [sys_msg] + copy_msgs        

            prompts_lists.append(processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True))
            input_images_lists.append(images)

        inputs = processor(
            prompts_lists, 
            input_images_lists, 
            max_slice_nums=max_slice_nums,
            use_image_id=use_image_id,
            return_tensors="pt", 
            max_length=max_inp_length
        ).to(self.device)

        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.05
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }
            
        if min_new_tokens > 0:
            generation_config['min_new_tokens'] = min_new_tokens

        generation_config.update(
            (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
        )

        inputs.pop("image_sizes")
        with torch.inference_mode():
            res = self.generate(
                **inputs,
                tokenizer=tokenizer,
                max_new_tokens=max_new_tokens,
                vision_hidden_states=vision_hidden_states,
                stream=stream,
                decode_text=True,
                **generation_config
            )
        
        if stream:
            def stream_gen():
                for text in res:
                    for term in self.terminators:
                        text = text.replace(term, '')
                    yield text
            return stream_gen()

        else:
            if batched:
                answer = res
            else:
                answer = res[0]
            return answer