whisper-base-atco / README.md
allenpoe's picture
Upload processor
8f4cdec verified
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - Jzuluaga/atcosim_corpus
metrics:
  - wer
model-index:
  - name: Whisper Base ATCOSIM
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: atcosim_corpus
          type: Jzuluaga/atcosim_corpus
          args: 'config: en, split: test'
        metrics:
          - type: wer
            value: 4.169242999735006
            name: Wer

Whisper Base ATCOSIM

This model is a fine-tuned version of openai/whisper-small on the atcosim_corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0557
  • Wer: 4.1692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.6572 0.2092 100 1.2694 71.0096
0.3373 0.4184 200 0.3225 16.4296
0.147 0.6276 300 0.1653 9.2130
0.0975 0.8368 400 0.1107 6.3334
0.0544 1.0460 500 0.0892 6.2583
0.0344 1.2552 600 0.0760 5.4103
0.0517 1.4644 700 0.0663 5.0393
0.0396 1.6736 800 0.0607 4.3106
0.0297 1.8828 900 0.0566 4.2708
0.0133 2.0921 1000 0.0557 4.1692

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1