DREAM / README.md
SaveBertAndGpt's picture
Update README.md
55a2adf
|
raw
history blame
3.68 kB
metadata
language: en
license: cc-by-4.0
library_name: transformers

This is the T5-11B model described in our paper DREAM: Improving Situational QA by First Elaborating the Situation, NAACL 2022 (Arxiv link: https://arxiv.org/abs/2112.08656, ACL Anthology link: https://aclanthology.org/2022.naacl-main.82/)

What is DREAM πŸ’­?

DREAM can be used to:

  • Build scene elaborations in a dataset-neutral way πŸ–ΌοΈ

  • πŸ“ˆ Improve QA performance across different end-tasks and on different models πŸ“ˆ

When people πŸ§‘β€πŸ’» answer questions about a specific situation, cognitive science 🧠 suggests that they form a mental picture πŸ–ΌοΈ of that situation. Will language models πŸ€– answer such questions more accurately if provided with additional details about the question situation πŸ–ΌοΈ ?

We train a new model, DREAM πŸ’­ , to answer questions that elaborate the scenes πŸ–ΌοΈ that situated questions are about, and then provide those elaborations as additional context πŸ“„ to a QA model πŸ€– . Our results show that DREAM πŸ’­ is able to create more βœ… accurate, βœ… useful, and βœ… consistent scene elaborations than a representative SOTA 🌟, zero-shot model (Macaw 🦜 ).

Remarkably, using DREAM’s πŸ’­ scene elaborations πŸ–ΌοΈ as additional context improvesπŸ“ˆ the answer accuracy across different downstream QA systems πŸ€– and on different end-tasks πŸ“ (including beyond that obtainable by further fine-tuning the QA system on DREAM’s training data πŸ“š). Our approach is question-agnostic πŸ’«, leaves end-task QA models unchanged ✨, and thus easily portable to other QA models 🌟, suggesting exciting opportunities for further improving and exploiting scene elaborations to better solve new problems. πŸ’‘

We invite you to try out DREAM πŸ’­ for your own application!

How to use DREAM πŸ’­?

We provide a quick example of how you can try out DREAM with just a few lines of code:

>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> model = AutoModelForSeq2SeqLM.from_pretrained("SaveBertAndGpt/DREAM")

>>> tokenizer = AutoTokenizer.from_pretrained("t5-11b")
>>> input_string = "$answer$ ; $question$ = [SITUATION] hitting someones car in the drive thru on purpose. [QUERY] rot"
>>> input_ids = tokenizer.encode(input_string, return_tensors="pt")
>>> output = model.generate(input_ids, max_length=200)
>>> tokenizer.batch_decode(output, skip_special_tokens=True)
["$answer$ = It's wrong to damage other people's property."]

As discussed in our paper, DREAM supports the following possible dimensions for each input situation S:

1. M : motivation of character(s) before S.
2. E: emotion of character(s) after S.
3. ROT : general Rule of Thumb (ROT) about whether action described in S is socially acceptable or not (also known as social norm).
4. Con: likely consequence of action in S.

To get DREAM's output for these dimensions, use the corresponding terms below after the "[QUERY] " tag in your input string:

motivation
emotion
rot
consequence

More details about DREAM πŸ’­ ...

For more details about DREAM, please refer to our:

For additional instructions about using the DREAM model and sample commands, please refer to https://github.com/allenai/dream/blob/main/model/README_DREAM_model.md.