phi-3-mini-LoRA
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2015
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9715 | 0.0242 | 100 | 1.9517 |
1.8637 | 0.0484 | 200 | 1.7875 |
1.7019 | 0.0725 | 300 | 1.6473 |
1.6127 | 0.0967 | 400 | 1.5828 |
1.5545 | 0.1209 | 500 | 1.5389 |
1.5144 | 0.1451 | 600 | 1.5045 |
1.4823 | 0.1693 | 700 | 1.4746 |
1.4535 | 0.1935 | 800 | 1.4502 |
1.4293 | 0.2176 | 900 | 1.4270 |
1.4132 | 0.2418 | 1000 | 1.4073 |
1.388 | 0.2660 | 1100 | 1.3880 |
1.3757 | 0.2902 | 1200 | 1.3706 |
1.3594 | 0.3144 | 1300 | 1.3543 |
1.3399 | 0.3386 | 1400 | 1.3410 |
1.3314 | 0.3627 | 1500 | 1.3284 |
1.3161 | 0.3869 | 1600 | 1.3167 |
1.3005 | 0.4111 | 1700 | 1.3084 |
1.2937 | 0.4353 | 1800 | 1.2987 |
1.2824 | 0.4595 | 1900 | 1.2920 |
1.2806 | 0.4836 | 2000 | 1.2859 |
1.2773 | 0.5078 | 2100 | 1.2793 |
1.2717 | 0.5320 | 2200 | 1.2738 |
1.2654 | 0.5562 | 2300 | 1.2692 |
1.2597 | 0.5804 | 2400 | 1.2644 |
1.2536 | 0.6046 | 2500 | 1.2601 |
1.2486 | 0.6287 | 2600 | 1.2560 |
1.2416 | 0.6529 | 2700 | 1.2527 |
1.2462 | 0.6771 | 2800 | 1.2494 |
1.2402 | 0.7013 | 2900 | 1.2465 |
1.2353 | 0.7255 | 3000 | 1.2434 |
1.2285 | 0.7497 | 3100 | 1.2410 |
1.2314 | 0.7738 | 3200 | 1.2384 |
1.2342 | 0.7980 | 3300 | 1.2357 |
1.2195 | 0.8222 | 3400 | 1.2339 |
1.2306 | 0.8464 | 3500 | 1.2316 |
1.2225 | 0.8706 | 3600 | 1.2301 |
1.2174 | 0.8947 | 3700 | 1.2281 |
1.2293 | 0.9189 | 3800 | 1.2267 |
1.2194 | 0.9431 | 3900 | 1.2250 |
1.2169 | 0.9673 | 4000 | 1.2234 |
1.2138 | 0.9915 | 4100 | 1.2224 |
1.2105 | 1.0157 | 4200 | 1.2214 |
1.2081 | 1.0398 | 4300 | 1.2201 |
1.2129 | 1.0640 | 4400 | 1.2188 |
1.1995 | 1.0882 | 4500 | 1.2177 |
1.196 | 1.1124 | 4600 | 1.2167 |
1.2041 | 1.1366 | 4700 | 1.2163 |
1.2104 | 1.1608 | 4800 | 1.2151 |
1.205 | 1.1849 | 4900 | 1.2144 |
1.2055 | 1.2091 | 5000 | 1.2135 |
1.1966 | 1.2333 | 5100 | 1.2128 |
1.2017 | 1.2575 | 5200 | 1.2120 |
1.1995 | 1.2817 | 5300 | 1.2117 |
1.2015 | 1.3058 | 5400 | 1.2108 |
1.1978 | 1.3300 | 5500 | 1.2103 |
1.2017 | 1.3542 | 5600 | 1.2098 |
1.196 | 1.3784 | 5700 | 1.2093 |
1.1976 | 1.4026 | 5800 | 1.2089 |
1.2057 | 1.4268 | 5900 | 1.2082 |
1.2012 | 1.4509 | 6000 | 1.2079 |
1.2067 | 1.4751 | 6100 | 1.2074 |
1.2048 | 1.4993 | 6200 | 1.2071 |
1.2011 | 1.5235 | 6300 | 1.2068 |
1.1911 | 1.5477 | 6400 | 1.2064 |
1.1974 | 1.5719 | 6500 | 1.2061 |
1.1934 | 1.5960 | 6600 | 1.2059 |
1.1896 | 1.6202 | 6700 | 1.2057 |
1.1895 | 1.6444 | 6800 | 1.2052 |
1.203 | 1.6686 | 6900 | 1.2051 |
1.191 | 1.6928 | 7000 | 1.2048 |
1.1995 | 1.7169 | 7100 | 1.2045 |
1.1979 | 1.7411 | 7200 | 1.2043 |
1.1918 | 1.7653 | 7300 | 1.2042 |
1.1969 | 1.7895 | 7400 | 1.2040 |
1.1869 | 1.8137 | 7500 | 1.2038 |
1.1871 | 1.8379 | 7600 | 1.2036 |
1.1988 | 1.8620 | 7700 | 1.2035 |
1.1942 | 1.8862 | 7800 | 1.2034 |
1.1931 | 1.9104 | 7900 | 1.2033 |
1.1947 | 1.9346 | 8000 | 1.2030 |
1.1932 | 1.9588 | 8100 | 1.2030 |
1.1922 | 1.9830 | 8200 | 1.2028 |
1.192 | 2.0071 | 8300 | 1.2027 |
1.1997 | 2.0313 | 8400 | 1.2027 |
1.1945 | 2.0555 | 8500 | 1.2026 |
1.1934 | 2.0797 | 8600 | 1.2026 |
1.1955 | 2.1039 | 8700 | 1.2024 |
1.1901 | 2.1280 | 8800 | 1.2024 |
1.1898 | 2.1522 | 8900 | 1.2023 |
1.186 | 2.1764 | 9000 | 1.2022 |
1.1858 | 2.2006 | 9100 | 1.2022 |
1.1965 | 2.2248 | 9200 | 1.2021 |
1.1835 | 2.2490 | 9300 | 1.2021 |
1.1983 | 2.2731 | 9400 | 1.2020 |
1.1813 | 2.2973 | 9500 | 1.2020 |
1.1903 | 2.3215 | 9600 | 1.2019 |
1.1952 | 2.3457 | 9700 | 1.2019 |
1.1899 | 2.3699 | 9800 | 1.2018 |
1.2011 | 2.3941 | 9900 | 1.2018 |
1.1936 | 2.4182 | 10000 | 1.2018 |
1.1931 | 2.4424 | 10100 | 1.2018 |
1.1991 | 2.4666 | 10200 | 1.2017 |
1.19 | 2.4908 | 10300 | 1.2017 |
1.1913 | 2.5150 | 10400 | 1.2016 |
1.1886 | 2.5391 | 10500 | 1.2017 |
1.1848 | 2.5633 | 10600 | 1.2016 |
1.1875 | 2.5875 | 10700 | 1.2016 |
1.1887 | 2.6117 | 10800 | 1.2016 |
1.1866 | 2.6359 | 10900 | 1.2016 |
1.188 | 2.6601 | 11000 | 1.2016 |
1.1952 | 2.6842 | 11100 | 1.2015 |
1.1947 | 2.7084 | 11200 | 1.2015 |
1.1905 | 2.7326 | 11300 | 1.2015 |
1.1838 | 2.7568 | 11400 | 1.2015 |
1.1893 | 2.7810 | 11500 | 1.2015 |
1.1808 | 2.8052 | 11600 | 1.2015 |
1.1909 | 2.8293 | 11700 | 1.2015 |
1.1858 | 2.8535 | 11800 | 1.2015 |
1.185 | 2.8777 | 11900 | 1.2015 |
1.1947 | 2.9019 | 12000 | 1.2015 |
1.1868 | 2.9261 | 12100 | 1.2014 |
1.1872 | 2.9502 | 12200 | 1.2015 |
1.1852 | 2.9744 | 12300 | 1.2015 |
1.185 | 2.9986 | 12400 | 1.2015 |
Framework versions
- PEFT 0.11.1
- Transformers 4.43.1
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for alizaidi/phi-3-mini-LoRA
Base model
microsoft/Phi-3-mini-4k-instruct