music_layoutlmv3_model

This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0083
  • Precision: 0.9627
  • Recall: 0.9773
  • F1: 0.9699
  • Accuracy: 0.9990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 8.33 100 0.0191 0.9338 0.9621 0.9478 0.9981
No log 16.67 200 0.0120 0.9412 0.9697 0.9552 0.9981
No log 25.0 300 0.0125 0.9412 0.9697 0.9552 0.9981
No log 33.33 400 0.0101 0.9412 0.9697 0.9552 0.9981
0.0527 41.67 500 0.0121 0.9412 0.9697 0.9552 0.9981
0.0527 50.0 600 0.0083 0.9627 0.9773 0.9699 0.9990
0.0527 58.33 700 0.0082 0.9627 0.9773 0.9699 0.9990
0.0527 66.67 800 0.0082 0.9627 0.9773 0.9699 0.9990
0.0527 75.0 900 0.0083 0.9627 0.9773 0.9699 0.9990
0.0006 83.33 1000 0.0083 0.9627 0.9773 0.9699 0.9990

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.2.2
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using alitavanaali/music_layoutlmv3_model 1

Evaluation results