wav2vec2-large-xlsr-coraa-exp-16
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.0160
- Wer: 1.0
- Cer: 0.9619
- Per: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
38.847 | 1.0 | 14 | 48.0649 | 1.0002 | 3.1169 | 1.0002 |
38.847 | 2.0 | 28 | 47.9396 | 1.0002 | 3.1191 | 1.0002 |
38.847 | 3.0 | 42 | 47.7446 | 1.0004 | 3.0938 | 1.0004 |
38.847 | 4.0 | 56 | 47.3282 | 1.0006 | 3.0227 | 1.0006 |
38.847 | 5.0 | 70 | 46.4748 | 1.0004 | 2.4135 | 1.0004 |
38.847 | 6.0 | 84 | 44.8749 | 1.0 | 1.4413 | 1.0 |
38.847 | 7.0 | 98 | 42.6022 | 1.0 | 0.9460 | 1.0 |
37.4633 | 8.0 | 112 | 39.6558 | 1.0 | 0.8978 | 1.0 |
37.4633 | 9.0 | 126 | 35.7305 | 1.0 | 0.9338 | 1.0 |
37.4633 | 10.0 | 140 | 30.8796 | 1.0 | 0.9501 | 1.0 |
37.4633 | 11.0 | 154 | 26.3341 | 1.0 | 0.9510 | 1.0 |
37.4633 | 12.0 | 168 | 23.4116 | 1.0 | 0.9510 | 1.0 |
37.4633 | 13.0 | 182 | 21.1265 | 1.0 | 0.9510 | 1.0 |
37.4633 | 14.0 | 196 | 19.4607 | 1.0 | 0.9510 | 1.0 |
24.5313 | 15.0 | 210 | 18.0357 | 1.0 | 0.9510 | 1.0 |
24.5313 | 16.0 | 224 | 16.9469 | 1.0 | 0.9510 | 1.0 |
24.5313 | 17.0 | 238 | 16.1513 | 1.0 | 0.9510 | 1.0 |
24.5313 | 18.0 | 252 | 15.5951 | 1.0 | 0.9510 | 1.0 |
24.5313 | 19.0 | 266 | 15.0803 | 1.0 | 0.9510 | 1.0 |
24.5313 | 20.0 | 280 | 14.8270 | 1.0 | 0.9510 | 1.0 |
24.5313 | 21.0 | 294 | 14.4665 | 1.0 | 0.9510 | 1.0 |
14.1395 | 22.0 | 308 | 14.3680 | 1.0 | 0.9510 | 1.0 |
14.1395 | 23.0 | 322 | 14.1886 | 1.0 | 0.9510 | 1.0 |
14.1395 | 24.0 | 336 | 14.0514 | 1.0 | 0.9510 | 1.0 |
14.1395 | 25.0 | 350 | 14.0722 | 1.0 | 0.9510 | 1.0 |
14.1395 | 26.0 | 364 | 13.8134 | 1.0 | 0.9511 | 1.0 |
14.1395 | 27.0 | 378 | 13.6935 | 1.0 | 0.9522 | 1.0 |
14.1395 | 28.0 | 392 | 13.3832 | 1.0 | 0.9594 | 1.0 |
12.0999 | 29.0 | 406 | 12.9235 | 1.0 | 0.9567 | 1.0 |
12.0999 | 30.0 | 420 | 12.5604 | 1.0 | 0.9516 | 1.0 |
12.0999 | 31.0 | 434 | 10.6877 | 1.0 | 0.9469 | 1.0 |
12.0999 | 32.0 | 448 | 9.3758 | 1.0 | 0.9565 | 1.0 |
12.0999 | 33.0 | 462 | 5.0729 | 1.0 | 0.9619 | 1.0 |
12.0999 | 34.0 | 476 | 4.0927 | 1.0 | 0.9619 | 1.0 |
12.0999 | 35.0 | 490 | 3.8576 | 1.0 | 0.9619 | 1.0 |
7.922 | 36.0 | 504 | 3.7497 | 1.0 | 0.9619 | 1.0 |
7.922 | 37.0 | 518 | 3.6650 | 1.0 | 0.9619 | 1.0 |
7.922 | 38.0 | 532 | 3.5863 | 1.0 | 0.9619 | 1.0 |
7.922 | 39.0 | 546 | 3.5280 | 1.0 | 0.9619 | 1.0 |
7.922 | 40.0 | 560 | 3.4813 | 1.0 | 0.9619 | 1.0 |
7.922 | 41.0 | 574 | 3.4481 | 1.0 | 0.9619 | 1.0 |
7.922 | 42.0 | 588 | 3.4184 | 1.0 | 0.9619 | 1.0 |
3.5155 | 43.0 | 602 | 3.3964 | 1.0 | 0.9619 | 1.0 |
3.5155 | 44.0 | 616 | 3.3748 | 1.0 | 0.9619 | 1.0 |
3.5155 | 45.0 | 630 | 3.3545 | 1.0 | 0.9619 | 1.0 |
3.5155 | 46.0 | 644 | 3.3354 | 1.0 | 0.9619 | 1.0 |
3.5155 | 47.0 | 658 | 3.3090 | 1.0 | 0.9619 | 1.0 |
3.5155 | 48.0 | 672 | 3.2789 | 1.0 | 0.9619 | 1.0 |
3.5155 | 49.0 | 686 | 3.2441 | 1.0 | 0.9619 | 1.0 |
3.2278 | 50.0 | 700 | 3.2153 | 1.0 | 0.9619 | 1.0 |
3.2278 | 51.0 | 714 | 3.1921 | 1.0 | 0.9619 | 1.0 |
3.2278 | 52.0 | 728 | 3.1863 | 1.0 | 0.9619 | 1.0 |
3.2278 | 53.0 | 742 | 3.1605 | 1.0 | 0.9619 | 1.0 |
3.2278 | 54.0 | 756 | 3.1517 | 1.0 | 0.9619 | 1.0 |
3.2278 | 55.0 | 770 | 3.1389 | 1.0 | 0.9619 | 1.0 |
3.2278 | 56.0 | 784 | 3.1274 | 1.0 | 0.9619 | 1.0 |
3.2278 | 57.0 | 798 | 3.1237 | 1.0 | 0.9619 | 1.0 |
3.0881 | 58.0 | 812 | 3.1115 | 1.0 | 0.9619 | 1.0 |
3.0881 | 59.0 | 826 | 3.1051 | 1.0 | 0.9619 | 1.0 |
3.0881 | 60.0 | 840 | 3.1055 | 1.0 | 0.9619 | 1.0 |
3.0881 | 61.0 | 854 | 3.0982 | 1.0 | 0.9619 | 1.0 |
3.0881 | 62.0 | 868 | 3.0933 | 1.0 | 0.9619 | 1.0 |
3.0881 | 63.0 | 882 | 3.0871 | 1.0 | 0.9619 | 1.0 |
3.0881 | 64.0 | 896 | 3.0788 | 1.0 | 0.9619 | 1.0 |
3.0331 | 65.0 | 910 | 3.0835 | 1.0 | 0.9619 | 1.0 |
3.0331 | 66.0 | 924 | 3.0786 | 1.0 | 0.9619 | 1.0 |
3.0331 | 67.0 | 938 | 3.0781 | 1.0 | 0.9619 | 1.0 |
3.0331 | 68.0 | 952 | 3.0761 | 1.0 | 0.9619 | 1.0 |
3.0331 | 69.0 | 966 | 3.0663 | 1.0 | 0.9619 | 1.0 |
3.0331 | 70.0 | 980 | 3.0629 | 1.0 | 0.9619 | 1.0 |
3.0331 | 71.0 | 994 | 3.0661 | 1.0 | 0.9619 | 1.0 |
2.9941 | 72.0 | 1008 | 3.0600 | 1.0 | 0.9619 | 1.0 |
2.9941 | 73.0 | 1022 | 3.0559 | 1.0 | 0.9619 | 1.0 |
2.9941 | 74.0 | 1036 | 3.0517 | 1.0 | 0.9619 | 1.0 |
2.9941 | 75.0 | 1050 | 3.0524 | 1.0 | 0.9619 | 1.0 |
2.9941 | 76.0 | 1064 | 3.0506 | 1.0 | 0.9619 | 1.0 |
2.9941 | 77.0 | 1078 | 3.0451 | 1.0 | 0.9619 | 1.0 |
2.9941 | 78.0 | 1092 | 3.0485 | 1.0 | 0.9619 | 1.0 |
2.9748 | 79.0 | 1106 | 3.0472 | 1.0 | 0.9619 | 1.0 |
2.9748 | 80.0 | 1120 | 3.0464 | 1.0 | 0.9619 | 1.0 |
2.9748 | 81.0 | 1134 | 3.0458 | 1.0 | 0.9619 | 1.0 |
2.9748 | 82.0 | 1148 | 3.0386 | 1.0 | 0.9619 | 1.0 |
2.9748 | 83.0 | 1162 | 3.0376 | 1.0 | 0.9619 | 1.0 |
2.9748 | 84.0 | 1176 | 3.0365 | 1.0 | 0.9619 | 1.0 |
2.9748 | 85.0 | 1190 | 3.0414 | 1.0 | 0.9619 | 1.0 |
2.9573 | 86.0 | 1204 | 3.0400 | 1.0 | 0.9619 | 1.0 |
2.9573 | 87.0 | 1218 | 3.0327 | 1.0 | 0.9619 | 1.0 |
2.9573 | 88.0 | 1232 | 3.0354 | 1.0 | 0.9619 | 1.0 |
2.9573 | 89.0 | 1246 | 3.0313 | 1.0 | 0.9619 | 1.0 |
2.9573 | 90.0 | 1260 | 3.0344 | 1.0 | 0.9619 | 1.0 |
2.9573 | 91.0 | 1274 | 3.0385 | 1.0 | 0.9619 | 1.0 |
2.9573 | 92.0 | 1288 | 3.0343 | 1.0 | 0.9619 | 1.0 |
2.957 | 93.0 | 1302 | 3.0365 | 1.0 | 0.9619 | 1.0 |
2.957 | 94.0 | 1316 | 3.0292 | 1.0 | 0.9619 | 1.0 |
2.957 | 95.0 | 1330 | 3.0238 | 1.0 | 0.9619 | 1.0 |
2.957 | 96.0 | 1344 | 3.0332 | 1.0 | 0.9619 | 1.0 |
2.957 | 97.0 | 1358 | 3.0295 | 1.0 | 0.9619 | 1.0 |
2.957 | 98.0 | 1372 | 3.0305 | 1.0 | 0.9619 | 1.0 |
2.957 | 99.0 | 1386 | 3.0284 | 1.0 | 0.9619 | 1.0 |
2.9439 | 100.0 | 1400 | 3.0302 | 1.0 | 0.9619 | 1.0 |
2.9439 | 101.0 | 1414 | 3.0284 | 1.0 | 0.9619 | 1.0 |
2.9439 | 102.0 | 1428 | 3.0302 | 1.0 | 0.9619 | 1.0 |
2.9439 | 103.0 | 1442 | 3.0312 | 1.0 | 0.9619 | 1.0 |
2.9439 | 104.0 | 1456 | 3.0255 | 1.0 | 0.9619 | 1.0 |
2.9439 | 105.0 | 1470 | 3.0309 | 1.0 | 0.9619 | 1.0 |
2.9439 | 106.0 | 1484 | 3.0268 | 1.0 | 0.9619 | 1.0 |
2.9439 | 107.0 | 1498 | 3.0318 | 1.0 | 0.9619 | 1.0 |
2.9382 | 108.0 | 1512 | 3.0244 | 1.0 | 0.9619 | 1.0 |
2.9382 | 109.0 | 1526 | 3.0307 | 1.0 | 0.9619 | 1.0 |
2.9382 | 110.0 | 1540 | 3.0229 | 1.0 | 0.9619 | 1.0 |
2.9382 | 111.0 | 1554 | 3.0231 | 1.0 | 0.9619 | 1.0 |
2.9382 | 112.0 | 1568 | 3.0288 | 1.0 | 0.9619 | 1.0 |
2.9382 | 113.0 | 1582 | 3.0191 | 1.0 | 0.9619 | 1.0 |
2.9382 | 114.0 | 1596 | 3.0276 | 1.0 | 0.9619 | 1.0 |
2.9379 | 115.0 | 1610 | 3.0226 | 1.0 | 0.9619 | 1.0 |
2.9379 | 116.0 | 1624 | 3.0271 | 1.0 | 0.9619 | 1.0 |
2.9379 | 117.0 | 1638 | 3.0220 | 1.0 | 0.9619 | 1.0 |
2.9379 | 118.0 | 1652 | 3.0240 | 1.0 | 0.9619 | 1.0 |
2.9379 | 119.0 | 1666 | 3.0305 | 1.0 | 0.9619 | 1.0 |
2.9379 | 120.0 | 1680 | 3.0160 | 1.0 | 0.9619 | 1.0 |
2.9379 | 121.0 | 1694 | 3.0231 | 1.0 | 0.9619 | 1.0 |
2.9353 | 122.0 | 1708 | 3.0200 | 1.0 | 0.9619 | 1.0 |
2.9353 | 123.0 | 1722 | 3.0191 | 1.0 | 0.9619 | 1.0 |
2.9353 | 124.0 | 1736 | 3.0240 | 1.0 | 0.9619 | 1.0 |
2.9353 | 125.0 | 1750 | 3.0204 | 1.0 | 0.9619 | 1.0 |
2.9353 | 126.0 | 1764 | 3.0222 | 1.0 | 0.9619 | 1.0 |
2.9353 | 127.0 | 1778 | 3.0249 | 1.0 | 0.9619 | 1.0 |
2.9353 | 128.0 | 1792 | 3.0212 | 1.0 | 0.9619 | 1.0 |
2.9377 | 129.0 | 1806 | 3.0228 | 1.0 | 0.9619 | 1.0 |
2.9377 | 130.0 | 1820 | 3.0219 | 1.0 | 0.9619 | 1.0 |
2.9377 | 131.0 | 1834 | 3.0206 | 1.0 | 0.9619 | 1.0 |
2.9377 | 132.0 | 1848 | 3.0238 | 1.0 | 0.9619 | 1.0 |
2.9377 | 133.0 | 1862 | 3.0212 | 1.0 | 0.9619 | 1.0 |
2.9377 | 134.0 | 1876 | 3.0241 | 1.0 | 0.9619 | 1.0 |
2.9377 | 135.0 | 1890 | 3.0248 | 1.0 | 0.9619 | 1.0 |
2.929 | 136.0 | 1904 | 3.0250 | 1.0 | 0.9619 | 1.0 |
2.929 | 137.0 | 1918 | 3.0218 | 1.0 | 0.9619 | 1.0 |
2.929 | 138.0 | 1932 | 3.0230 | 1.0 | 0.9619 | 1.0 |
2.929 | 139.0 | 1946 | 3.0240 | 1.0 | 0.9619 | 1.0 |
2.929 | 140.0 | 1960 | 3.0226 | 1.0 | 0.9619 | 1.0 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.