wav2vec2-large-xlsr-coraa-exp-14

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5485
  • Wer: 0.3417
  • Cer: 0.1776
  • Per: 0.3310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Per
37.6216 1.0 14 46.2465 1.0071 4.0178 1.0071
37.6216 2.0 28 44.1710 1.0041 2.7949 1.0039
37.6216 3.0 42 39.3999 1.0 0.9284 1.0
37.6216 4.0 56 31.8074 1.0 0.9589 1.0
37.6216 5.0 70 20.4155 1.0 0.9619 1.0
37.6216 6.0 84 9.6948 1.0 0.9619 1.0
37.6216 7.0 98 5.8283 1.0 0.9619 1.0
25.7765 8.0 112 4.5548 1.0 0.9619 1.0
25.7765 9.0 126 4.0980 1.0 0.9619 1.0
25.7765 10.0 140 3.8329 1.0 0.9619 1.0
25.7765 11.0 154 3.6665 1.0 0.9619 1.0
25.7765 12.0 168 3.5348 1.0 0.9619 1.0
25.7765 13.0 182 3.3872 1.0 0.9619 1.0
25.7765 14.0 196 3.2821 1.0 0.9619 1.0
3.8439 15.0 210 3.2034 1.0 0.9619 1.0
3.8439 16.0 224 3.1549 1.0 0.9619 1.0
3.8439 17.0 238 3.1379 1.0 0.9619 1.0
3.8439 18.0 252 3.0903 1.0 0.9619 1.0
3.8439 19.0 266 3.0685 1.0 0.9619 1.0
3.8439 20.0 280 3.0650 1.0 0.9619 1.0
3.8439 21.0 294 3.0469 1.0 0.9619 1.0
3.035 22.0 308 3.0442 1.0 0.9619 1.0
3.035 23.0 322 3.0488 1.0 0.9619 1.0
3.035 24.0 336 3.0284 1.0 0.9619 1.0
3.035 25.0 350 3.0219 1.0 0.9619 1.0
3.035 26.0 364 3.0185 1.0 0.9619 1.0
3.035 27.0 378 3.0074 1.0 0.9619 1.0
3.035 28.0 392 3.0130 1.0 0.9619 1.0
2.9429 29.0 406 3.0014 1.0 0.9619 1.0
2.9429 30.0 420 2.9969 1.0 0.9619 1.0
2.9429 31.0 434 3.0056 1.0 0.9619 1.0
2.9429 32.0 448 3.0042 1.0 0.9619 1.0
2.9429 33.0 462 2.9842 1.0 0.9619 1.0
2.9429 34.0 476 2.9850 1.0 0.9619 1.0
2.9429 35.0 490 2.9796 1.0 0.9619 1.0
2.9201 36.0 504 2.9647 1.0 0.9619 1.0
2.9201 37.0 518 2.9327 1.0 0.9619 1.0
2.9201 38.0 532 2.8997 1.0 0.9619 1.0
2.9201 39.0 546 2.8702 1.0 0.9619 1.0
2.9201 40.0 560 2.8146 1.0 0.9619 1.0
2.9201 41.0 574 2.6820 1.0 0.9600 1.0
2.9201 42.0 588 2.5411 1.0 0.9084 1.0
2.7676 43.0 602 2.3459 1.0 0.7805 1.0
2.7676 44.0 616 2.0668 1.0 0.5817 1.0
2.7676 45.0 630 1.7420 1.0 0.4851 1.0
2.7676 46.0 644 1.4977 1.0 0.4356 1.0
2.7676 47.0 658 1.2985 0.9986 0.3912 0.9986
2.7676 48.0 672 1.1510 0.9441 0.3408 0.9403
2.7676 49.0 686 1.0227 0.7387 0.2760 0.7249
1.6224 50.0 700 0.9463 0.5246 0.2268 0.4965
1.6224 51.0 714 0.8637 0.4951 0.2179 0.4640
1.6224 52.0 728 0.8114 0.4732 0.2128 0.4449
1.6224 53.0 742 0.7687 0.4388 0.2038 0.4102
1.6224 54.0 756 0.7736 0.4340 0.2035 0.4063
1.6224 55.0 770 0.7564 0.4275 0.2018 0.4019
1.6224 56.0 784 0.7419 0.4210 0.2015 0.3988
1.6224 57.0 798 0.7089 0.4074 0.1982 0.3856
0.7727 58.0 812 0.6822 0.4061 0.1962 0.3866
0.7727 59.0 826 0.6505 0.4067 0.1952 0.3866
0.7727 60.0 840 0.6542 0.3933 0.1938 0.3767
0.7727 61.0 854 0.6346 0.3958 0.1926 0.3789
0.7727 62.0 868 0.6301 0.3885 0.1912 0.3722
0.7727 63.0 882 0.6702 0.3944 0.1944 0.3755
0.7727 64.0 896 0.6394 0.3846 0.1905 0.3675
0.5159 65.0 910 0.6235 0.3775 0.1892 0.3606
0.5159 66.0 924 0.6329 0.3795 0.1911 0.3633
0.5159 67.0 938 0.6074 0.3732 0.1891 0.3582
0.5159 68.0 952 0.5993 0.3742 0.1876 0.3592
0.5159 69.0 966 0.6088 0.3663 0.1871 0.3513
0.5159 70.0 980 0.6132 0.3771 0.1888 0.3606
0.5159 71.0 994 0.6205 0.3779 0.1892 0.3616
0.41 72.0 1008 0.6048 0.3732 0.1885 0.3562
0.41 73.0 1022 0.5851 0.3700 0.1873 0.3543
0.41 74.0 1036 0.5975 0.3706 0.1872 0.3543
0.41 75.0 1050 0.5996 0.3722 0.1890 0.3555
0.41 76.0 1064 0.5951 0.3690 0.1874 0.3533
0.41 77.0 1078 0.5791 0.3637 0.1857 0.3486
0.41 78.0 1092 0.5675 0.3616 0.1851 0.3466
0.371 79.0 1106 0.6022 0.3659 0.1880 0.3486
0.371 80.0 1120 0.5954 0.3669 0.1854 0.3507
0.371 81.0 1134 0.5832 0.3629 0.1841 0.3470
0.371 82.0 1148 0.5867 0.3620 0.1843 0.3456
0.371 83.0 1162 0.5971 0.3669 0.1870 0.3519
0.371 84.0 1176 0.5926 0.3633 0.1859 0.3478
0.371 85.0 1190 0.5774 0.3596 0.1837 0.3438
0.3317 86.0 1204 0.5779 0.3610 0.1846 0.3462
0.3317 87.0 1218 0.5797 0.3604 0.1845 0.3446
0.3317 88.0 1232 0.5750 0.3578 0.1843 0.3425
0.3317 89.0 1246 0.5651 0.3584 0.1824 0.3436
0.3317 90.0 1260 0.5749 0.3592 0.1830 0.3427
0.3317 91.0 1274 0.5791 0.3572 0.1834 0.3419
0.3317 92.0 1288 0.5589 0.3541 0.1814 0.3389
0.3039 93.0 1302 0.5670 0.3543 0.1816 0.3387
0.3039 94.0 1316 0.5619 0.3521 0.1805 0.3385
0.3039 95.0 1330 0.5628 0.3539 0.1801 0.3393
0.3039 96.0 1344 0.5800 0.3572 0.1820 0.3417
0.3039 97.0 1358 0.5605 0.3509 0.1805 0.3371
0.3039 98.0 1372 0.5619 0.3513 0.1805 0.3369
0.3039 99.0 1386 0.5704 0.3523 0.1825 0.3373
0.2596 100.0 1400 0.5618 0.3531 0.1810 0.3393
0.2596 101.0 1414 0.5591 0.3458 0.1799 0.3310
0.2596 102.0 1428 0.5675 0.3492 0.1817 0.3352
0.2596 103.0 1442 0.5614 0.3537 0.1808 0.3397
0.2596 104.0 1456 0.5652 0.3527 0.1810 0.3389
0.2596 105.0 1470 0.5576 0.3497 0.1798 0.3354
0.2596 106.0 1484 0.5653 0.3499 0.1794 0.3360
0.2596 107.0 1498 0.5543 0.3474 0.1796 0.3324
0.2488 108.0 1512 0.5540 0.3484 0.1794 0.3344
0.2488 109.0 1526 0.5626 0.3484 0.1804 0.3346
0.2488 110.0 1540 0.5648 0.3499 0.1809 0.3352
0.2488 111.0 1554 0.5588 0.3495 0.1803 0.3358
0.2488 112.0 1568 0.5574 0.3466 0.1790 0.3338
0.2488 113.0 1582 0.5624 0.3486 0.1798 0.3358
0.2488 114.0 1596 0.5538 0.3488 0.1791 0.3348
0.2409 115.0 1610 0.5577 0.3474 0.1790 0.3332
0.2409 116.0 1624 0.5612 0.3472 0.1793 0.3322
0.2409 117.0 1638 0.5640 0.3482 0.1797 0.3334
0.2409 118.0 1652 0.5598 0.3484 0.1791 0.3346
0.2409 119.0 1666 0.5660 0.3468 0.1792 0.3334
0.2409 120.0 1680 0.5578 0.3460 0.1784 0.3328
0.2409 121.0 1694 0.5592 0.3466 0.1790 0.3338
0.2278 122.0 1708 0.5624 0.3456 0.1788 0.3332
0.2278 123.0 1722 0.5639 0.3436 0.1789 0.3308
0.2278 124.0 1736 0.5486 0.3438 0.1781 0.3320
0.2278 125.0 1750 0.5649 0.3417 0.1790 0.3291
0.2278 126.0 1764 0.5518 0.3425 0.1783 0.3302
0.2278 127.0 1778 0.5538 0.3415 0.1780 0.3295
0.2278 128.0 1792 0.5591 0.3413 0.1779 0.3302
0.2261 129.0 1806 0.5575 0.3417 0.1780 0.3295
0.2261 130.0 1820 0.5548 0.3403 0.1778 0.3287
0.2261 131.0 1834 0.5608 0.3401 0.1781 0.3289
0.2261 132.0 1848 0.5485 0.3417 0.1776 0.3310
0.2261 133.0 1862 0.5508 0.3393 0.1776 0.3281
0.2261 134.0 1876 0.5572 0.3383 0.1777 0.3269
0.2261 135.0 1890 0.5605 0.3389 0.1783 0.3269
0.2015 136.0 1904 0.5549 0.3387 0.1776 0.3271
0.2015 137.0 1918 0.5534 0.3399 0.1775 0.3281
0.2015 138.0 1932 0.5525 0.3385 0.1775 0.3271
0.2015 139.0 1946 0.5551 0.3383 0.1774 0.3269
0.2015 140.0 1960 0.5531 0.3375 0.1770 0.3259
0.2015 141.0 1974 0.5504 0.3354 0.1765 0.3236
0.2015 142.0 1988 0.5518 0.3379 0.1770 0.3259
0.2036 143.0 2002 0.5525 0.3377 0.1770 0.3255
0.2036 144.0 2016 0.5528 0.3383 0.1772 0.3269
0.2036 145.0 2030 0.5534 0.3379 0.1773 0.3263
0.2036 146.0 2044 0.5548 0.3373 0.1774 0.3259
0.2036 147.0 2058 0.5542 0.3364 0.1771 0.3249
0.2036 148.0 2072 0.5550 0.3373 0.1772 0.3257
0.2036 149.0 2086 0.5555 0.3373 0.1772 0.3257
0.2013 150.0 2100 0.5558 0.3383 0.1774 0.3265

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.