|
--- |
|
base_model: mastikaui/NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2-tuning |
|
results: [] |
|
language: |
|
- en |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2-tuning |
|
|
|
This model is a fine-tuned version of [mastikaui/NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2](https://huggingface.co/mastikaui/NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3128 |
|
- Accuracy: 0.8776 |
|
- F1 Score: 0.8775 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| |
|
| 0.3035 | 1.0 | 1224 | 0.3224 | 0.8636 | 0.8637 | |
|
| 0.2797 | 2.0 | 2448 | 0.3174 | 0.8685 | 0.8685 | |
|
| 0.2881 | 3.0 | 3672 | 0.3139 | 0.8709 | 0.8709 | |
|
| 0.2719 | 4.0 | 4896 | 0.3167 | 0.8734 | 0.8734 | |
|
| 0.2573 | 5.0 | 6120 | 0.3155 | 0.8758 | 0.8758 | |
|
| 0.2524 | 6.0 | 7344 | 0.3153 | 0.8743 | 0.8743 | |
|
| 0.2531 | 7.0 | 8568 | 0.3158 | 0.8752 | 0.8753 | |
|
| 0.2516 | 8.0 | 9792 | 0.3199 | 0.8746 | 0.8747 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |