zephyr-7b-dpo-full / README.md
lewtun's picture
lewtun HF staff
End of training
8e0975a
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-dpo-full
    results: []

zephyr-7b-dpo-full

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5042
  • Rewards/chosen: -1.0500
  • Rewards/rejected: -2.0480
  • Rewards/accuracies: 0.7539
  • Rewards/margins: 0.9980
  • Logps/rejected: -468.1450
  • Logps/chosen: -368.4135
  • Logits/rejected: 2.3821
  • Logits/chosen: 1.6141

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5723 0.21 100 0.5851 -0.4097 -0.8752 0.7031 0.4655 -350.8695 -304.3812 -2.3494 -2.4070
0.5084 0.42 200 0.5251 -0.9116 -1.7472 0.7422 0.8355 -438.0663 -354.5790 1.3918 0.9248
0.5059 0.63 300 0.5130 -0.8646 -1.7542 0.75 0.8896 -438.7735 -349.8758 2.0331 1.2558
0.4853 0.84 400 0.5050 -1.0929 -2.1085 0.7539 1.0156 -474.1963 -372.7067 2.5922 1.8194

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.0