zephyr-7b-dpo-full / README.md
lewtun's picture
lewtun HF staff
End of training
6dd59ca
|
raw
history blame
2.87 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-dpo-full
    results: []

zephyr-7b-dpo-full

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5028
  • Rewards/chosen: -0.9469
  • Rewards/rejected: -1.8932
  • Rewards/accuracies: 0.7656
  • Rewards/margins: 0.9463
  • Logps/rejected: -451.4661
  • Logps/chosen: -357.2325
  • Logits/rejected: 1.5731
  • Logits/chosen: 0.6530

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Logits/chosen Logits/rejected Logps/chosen Logps/rejected Validation Loss Rewards/accuracies Rewards/chosen Rewards/margins Rewards/rejected
0.5545 0.21 100 -1.3212 -1.0287 -312.0799 -374.3159 0.5658 0.7188 -0.4953 0.6264 -1.1217
0.5026 0.42 200 -0.1773 0.5190 -352.4985 -439.3264 0.5202 0.7461 -0.8995 0.8723 -1.7718
0.5106 0.63 300 0.0862 0.9099 -342.0043 -424.9976 0.5104 0.7656 -0.7946 0.8339 -1.6285
0.4859 0.84 400 0.7818 1.7438 -360.3139 -457.9452 0.5031 0.7578 -0.9777 0.9803 -1.9580

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.0