metadata
library_name: transformers
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.91
ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5608
- Accuracy: 0.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7343 | 1.0 | 100 | 1.0826 | 0.62 |
0.6206 | 2.0 | 200 | 0.6780 | 0.75 |
0.3899 | 3.0 | 300 | 0.7010 | 0.81 |
0.087 | 4.0 | 400 | 0.6710 | 0.84 |
0.004 | 5.0 | 500 | 0.5797 | 0.89 |
0.0009 | 6.0 | 600 | 0.7082 | 0.87 |
0.0001 | 7.0 | 700 | 0.5387 | 0.91 |
0.0001 | 8.0 | 800 | 0.5515 | 0.915 |
0.0001 | 9.0 | 900 | 0.5586 | 0.91 |
0.0001 | 10.0 | 1000 | 0.5608 | 0.91 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1