Text-to-Video
Diffusers
Safetensors
I2VGenXLPipeline
image-to-video
README_diffusers.md ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: diffusers
4
+ tags:
5
+ - image-to-video
6
+ pipeline_tag: text-to-video
7
+ ---
8
+ # VGen
9
+
10
+
11
+ ![figure1](source/VGen.jpg "figure1")
12
+
13
+ VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods:
14
+
15
+
16
+ - [I2VGen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://i2vgen-xl.github.io/)
17
+ - [VideoComposer: Compositional Video Synthesis with Motion Controllability](https://videocomposer.github.io/)
18
+ - [Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation](https://higen-t2v.github.io/)
19
+ - [A Recipe for Scaling up Text-to-Video Generation with Text-free Videos]()
20
+ - [InstructVideo: Instructing Video Diffusion Models with Human Feedback]()
21
+ - [DreamVideo: Composing Your Dream Videos with Customized Subject and Motion](https://dreamvideo-t2v.github.io/)
22
+ - [VideoLCM: Video Latent Consistency Model](https://arxiv.org/abs/2312.09109)
23
+ - [Modelscope text-to-video technical report](https://arxiv.org/abs/2308.06571)
24
+
25
+
26
+ VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more.
27
+
28
+
29
+ <a href='https://i2vgen-xl.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.04145'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/XUi0y7dxqEQ) <a href='https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441039979087.mp4'><img src='source/logo.png'></a>
30
+
31
+
32
+ ## 🔥News!!!
33
+ - __[2024.01]__ Diffusers now supports I2VGenXL
34
+ - __[2023.12]__ We release the high-efficiency video generation method [VideoLCM](https://arxiv.org/abs/2312.09109)
35
+ - __[2023.12]__ We release the code and model of I2VGen-XL and the ModelScope T2V
36
+ - __[2023.12]__ We release the T2V method [HiGen](https://higen-t2v.github.io) and customizing T2V method [DreamVideo](https://dreamvideo-t2v.github.io).
37
+ - __[2023.12]__ We write an [introduction docment](doc/introduction.pdf) for VGen and compare I2VGen-XL with SVD.
38
+ - __[2023.11]__ We release a high-quality I2VGen-XL model, please refer to the [Webpage](https://i2vgen-xl.github.io)
39
+
40
+
41
+ ## TODO
42
+ - [x] Release the technical papers and webpage of [I2VGen-XL](doc/i2vgen-xl.md)
43
+ - [x] Release the code and pretrained models that can generate 1280x720 videos
44
+ - [ ] Release models optimized specifically for the human body and faces
45
+ - [ ] Updated version can fully maintain the ID and capture large and accurate motions simultaneously
46
+ - [ ] Release other methods and the corresponding models
47
+
48
+
49
+ ## Preparation
50
+
51
+ The main features of VGen are as follows:
52
+ - Expandability, allowing for easy management of your own experiments.
53
+ - Completeness, encompassing all common components for video generation.
54
+ - Excellent performance, featuring powerful pre-trained models in multiple tasks.
55
+
56
+
57
+ ### Installation
58
+
59
+ ```
60
+ conda create -n vgen python=3.8
61
+ conda activate vgen
62
+ pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
63
+ pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
64
+ ```
65
+
66
+ ### Datasets
67
+
68
+ We have provided a **demo dataset** that includes images and videos, along with their lists in ``data``.
69
+
70
+ *Please note that the demo images used here are for testing purposes and were not included in the training.*
71
+
72
+
73
+ ### Clone codeb
74
+
75
+ ```
76
+ git clone https://github.com/damo-vilab/i2vgen-xl.git
77
+ cd i2vgen-xl
78
+ ```
79
+
80
+
81
+ ## Getting Started with VGen
82
+
83
+ ### (1) Train your text-to-video model
84
+
85
+
86
+ Executing the following command to enable distributed training is as easy as that.
87
+ ```
88
+ python train_net.py --cfg configs/t2v_train.yaml
89
+ ```
90
+
91
+ In the `t2v_train.yaml` configuration file, you can specify the data, adjust the video-to-image ratio using `frame_lens`, and validate your ideas with different Diffusion settings, and so on.
92
+
93
+ - Before the training, you can download any of our open-source models for initialization. Our codebase supports custom initialization and `grad_scale` settings, all of which are included in the `Pretrain` item in yaml file.
94
+ - During the training, you can view the saved models and intermediate inference results in the `workspace/experiments/t2v_train`directory.
95
+
96
+ After the training is completed, you can perform inference on the model using the following command.
97
+ ```
98
+ python inference.py --cfg configs/t2v_infer.yaml
99
+ ```
100
+ Then you can find the videos you generated in the `workspace/experiments/test_img_01` directory. For specific configurations such as data, models, seed, etc., please refer to the `t2v_infer.yaml` file.
101
+
102
+ <!-- <table>
103
+ <center>
104
+ <tr>
105
+ <td ><center>
106
+ <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4"></video>
107
+ </center></td>
108
+ <td ><center>
109
+ <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4"></video>
110
+ </center></td>
111
+ </tr>
112
+ </center>
113
+ </table>
114
+ </center> -->
115
+
116
+ <table>
117
+ <center>
118
+ <tr>
119
+ <td ><center>
120
+ <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01Ya2I5I25utrJwJ9Jf_!!6000000007587-2-tps-1280-720.png"></image>
121
+ </center></td>
122
+ <td ><center>
123
+ <image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01CrmYaz1zXBetmg3dd_!!6000000006723-2-tps-1280-720.png"></image>
124
+ </center></td>
125
+ </tr>
126
+ <tr>
127
+ <td ><center>
128
+ <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4">HRER</a> to view the generated video.</p>
129
+ </center></td>
130
+ <td ><center>
131
+ <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4">HRER</a> to view the generated video.</p>
132
+ </center></td>
133
+ </tr>
134
+ </center>
135
+ </table>
136
+ </center>
137
+
138
+
139
+ ### (2) Run the I2VGen-XL model
140
+
141
+ (i) Download model and test data:
142
+ ```
143
+ !pip install modelscope
144
+ from modelscope.hub.snapshot_download import snapshot_download
145
+ model_dir = snapshot_download('damo/I2VGen-XL', cache_dir='models/', revision='v1.0.0')
146
+ ```
147
+
148
+ (ii) Run the following command:
149
+ ```
150
+ python inference.py --cfg configs/i2vgen_xl_infer.yaml
151
+ ```
152
+ In a few minutes, you can retrieve the high-definition video you wish to create from the `workspace/experiments/test_img_01` directory. At present, we find that the current model performs inadequately on **anime images** and **images with a black background** due to the lack of relevant training data. We are consistently working to optimize it.
153
+
154
+
155
+ <span style="color:red">Due to the compression of our video quality in GIF format, please click 'HRER' below to view the original video.</span>
156
+
157
+ <center>
158
+ <table>
159
+ <center>
160
+ <tr>
161
+ <td ><center>
162
+ <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01CCEq7K1ZeLpNQqrWu_!!6000000003219-0-tps-1280-720.jpg"></image>
163
+ </center></td>
164
+ <td ><center>
165
+ <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4"></video> -->
166
+ <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01hIQcvG1spmQMLqBo0_!!6000000005816-1-tps-1280-704.gif"></image>
167
+ </center></td>
168
+ </tr>
169
+ <tr>
170
+ <td ><center>
171
+ <p>Input Image</p>
172
+ </center></td>
173
+ <td ><center>
174
+ <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4">HRER</a> to view the generated video.</p>
175
+ </center></td>
176
+ </tr>
177
+ <tr>
178
+ <td ><center>
179
+ <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01ZXY7UN23K8q4oQ3uG_!!6000000007236-2-tps-1280-720.png"></image>
180
+ </center></td>
181
+ <td ><center>
182
+ <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4"></video> -->
183
+ <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01iaSiiv1aJZURUEY53_!!6000000003309-1-tps-1280-704.gif"></image>
184
+ </center></td>
185
+ </tr>
186
+ <tr>
187
+ <td ><center>
188
+ <p>Input Image</p>
189
+ </center></td>
190
+ <td ><center>
191
+ <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4">HRER</a> to view the generated video.</p>
192
+ </center></td>
193
+ </tr>
194
+ <tr>
195
+ <td ><center>
196
+ <image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01NHpVGl1oat4H54Hjf_!!6000000005242-2-tps-1280-720.png"></image>
197
+ </center></td>
198
+ <td ><center>
199
+ <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4"></video> -->
200
+ <!-- <image muted="true" height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image>
201
+ -->
202
+ <image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image>
203
+ </center></td>
204
+ </tr>
205
+ <tr>
206
+ <td ><center>
207
+ <p>Input Image</p>
208
+ </center></td>
209
+ <td ><center>
210
+ <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4">HERE</a> to view the generated video.</p>
211
+ </center></td>
212
+ </tr>
213
+ <tr>
214
+ <td ><center>
215
+ <image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01odS61s1WW9tXen21S_!!6000000002795-0-tps-1280-720.jpg"></image>
216
+ </center></td>
217
+ <td ><center>
218
+ <!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4"></video> -->
219
+ <image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01Jyk1HT28JkZtpAtY6_!!6000000007912-1-tps-1280-704.gif"></image>
220
+ </center></td>
221
+ </tr>
222
+ <tr>
223
+ <td ><center>
224
+ <p>Input Image</p>
225
+ </center></td>
226
+ <td ><center>
227
+ <p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4">HERE</a> to view the generated video.</p>
228
+ </center></td>
229
+ </tr>
230
+ </center>
231
+ </table>
232
+ </center>
233
+
234
+ ### (3) Other methods
235
+
236
+ In preparation.
237
+
238
+
239
+ ## Customize your own approach
240
+
241
+ Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time.
242
+
243
+ ## Integration of I2VGenXL with 🧨 diffusers
244
+
245
+ I2VGenXL is supported in the 🧨 diffusers library. Here's how to use it:
246
+
247
+ ```python
248
+ import torch
249
+ from diffusers import I2VGenXLPipeline
250
+ from diffusers.utils import load_image, export_to_gif
251
+
252
+ repo_id = "ali-vilab/i2vgen-xl"
253
+ pipeline = I2VGenXLPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
254
+
255
+ image_url = "https://github.com/ali-vilab/i2vgen-xl/blob/main/data/test_images/img_0009.png?download=true"
256
+ image = load_image(image_url).convert("RGB")
257
+ prompt = "Papers were floating in the air on a table in the library"
258
+
259
+ generator = torch.manual_seed(8888)
260
+ frames = pipeline(
261
+ prompt=prompt,
262
+ image=image,
263
+ generator=generator
264
+ ).frames[0]
265
+
266
+ print(export_to_gif(frames))
267
+ ```
268
+
269
+ Find the official documentation [here](https://huggingface.co/docs/diffusers/main/en/api/pipelines/i2vgenxl).
270
+
271
+ Sample output with I2VGenXL:
272
+
273
+ <table>
274
+ <tr>
275
+ <td><center>
276
+ masterpiece, bestquality, sunset.
277
+ <br>
278
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"
279
+ alt="library"
280
+ style="width: 300px;" />
281
+ </center></td>
282
+ </tr>
283
+ </table>
284
+
285
+ ## BibTeX
286
+
287
+ If this repo is useful to you, please cite our corresponding technical paper.
288
+
289
+
290
+ ```bibtex
291
+ @article{2023i2vgenxl,
292
+ title={I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models},
293
+ author={Zhang, Shiwei and Wang, Jiayu and Zhang, Yingya and Zhao, Kang and Yuan, Hangjie and Qing, Zhiwu and Wang, Xiang and Zhao, Deli and Zhou, Jingren},
294
+ booktitle={arXiv preprint arXiv:2311.04145},
295
+ year={2023}
296
+ }
297
+ @article{2023videocomposer,
298
+ title={VideoComposer: Compositional Video Synthesis with Motion Controllability},
299
+ author={Wang, Xiang and Yuan, Hangjie and Zhang, Shiwei and Chen, Dayou and Wang, Jiuniu, and Zhang, Yingya, and Shen, Yujun, and Zhao, Deli and Zhou, Jingren},
300
+ booktitle={arXiv preprint arXiv:2306.02018},
301
+ year={2023}
302
+ }
303
+ @article{wang2023modelscope,
304
+ title={Modelscope text-to-video technical report},
305
+ author={Wang, Jiuniu and Yuan, Hangjie and Chen, Dayou and Zhang, Yingya and Wang, Xiang and Zhang, Shiwei},
306
+ journal={arXiv preprint arXiv:2308.06571},
307
+ year={2023}
308
+ }
309
+ @article{dreamvideo,
310
+ title={DreamVideo: Composing Your Dream Videos with Customized Subject and Motion},
311
+ author={Wei, Yujie and Zhang, Shiwei and Qing, Zhiwu and Yuan, Hangjie and Liu, Zhiheng and Liu, Yu and Zhang, Yingya and Zhou, Jingren and Shan, Hongming},
312
+ journal={arXiv preprint arXiv:2312.04433},
313
+ year={2023}
314
+ }
315
+ @article{qing2023higen,
316
+ title={Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation},
317
+ author={Qing, Zhiwu and Zhang, Shiwei and Wang, Jiayu and Wang, Xiang and Wei, Yujie and Zhang, Yingya and Gao, Changxin and Sang, Nong },
318
+ journal={arXiv preprint arXiv:2312.04483},
319
+ year={2023}
320
+ }
321
+ @article{wang2023videolcm,
322
+ title={VideoLCM: Video Latent Consistency Model},
323
+ author={Wang, Xiang and Zhang, Shiwei and Zhang, Han and Liu, Yu and Zhang, Yingya and Gao, Changxin and Sang, Nong },
324
+ journal={arXiv preprint arXiv:2312.09109},
325
+ year={2023}
326
+ }
327
+ ```
328
+
329
+ ## Disclaimer
330
+
331
+ This open-source model is trained with using [WebVid-10M](https://m-bain.github.io/webvid-dataset/) and [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/) datasets and is intended for <strong>RESEARCH/NON-COMMERCIAL USE ONLY</strong>.
332
+
333
+
334
+
feature_extractor/preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 224,
4
+ "width": 224
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "shortest_edge": 224
26
+ }
27
+ }
image_encoder/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/patrick/.cache/huggingface/hub/models--diffusers--i2vgen-xl/snapshots/f2430483897b1745040925549ab549dcfbd9ce86/image_encoder",
3
+ "architectures": [
4
+ "CLIPVisionModelWithProjection"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "dropout": 0.0,
8
+ "hidden_act": "gelu",
9
+ "hidden_size": 1280,
10
+ "image_size": 224,
11
+ "initializer_factor": 1.0,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5120,
14
+ "layer_norm_eps": 1e-05,
15
+ "model_type": "clip_vision_model",
16
+ "num_attention_heads": 16,
17
+ "num_channels": 3,
18
+ "num_hidden_layers": 32,
19
+ "patch_size": 14,
20
+ "projection_dim": 1024,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.38.0.dev0"
23
+ }
image_encoder/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed1e5af7b4042ca30ec29999a4a5cfcac90b7fb610fd05ace834f2dcbb763eab
3
+ size 2528371296
model_index.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "I2VGenXLPipeline",
3
+ "_diffusers_version": "0.26.0.dev0",
4
+ "_name_or_path": "diffusers/i2vgen-xl",
5
+ "feature_extractor": [
6
+ "transformers",
7
+ "CLIPImageProcessor"
8
+ ],
9
+ "image_encoder": [
10
+ "transformers",
11
+ "CLIPVisionModelWithProjection"
12
+ ],
13
+ "scheduler": [
14
+ "diffusers",
15
+ "DDIMScheduler"
16
+ ],
17
+ "text_encoder": [
18
+ "transformers",
19
+ "CLIPTextModel"
20
+ ],
21
+ "tokenizer": [
22
+ "transformers",
23
+ "CLIPTokenizer"
24
+ ],
25
+ "unet": [
26
+ "diffusers",
27
+ "I2VGenXLUNet"
28
+ ],
29
+ "vae": [
30
+ "diffusers",
31
+ "AutoencoderKL"
32
+ ]
33
+ }
scheduler/scheduler_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDIMScheduler",
3
+ "_diffusers_version": "0.26.0.dev0",
4
+ "beta_end": 0.02,
5
+ "beta_schedule": "squaredcos_cap_v2",
6
+ "beta_start": 0.0001,
7
+ "clip_sample": false,
8
+ "clip_sample_range": 1.0,
9
+ "dynamic_thresholding_ratio": 0.995,
10
+ "num_train_timesteps": 1000,
11
+ "prediction_type": "v_prediction",
12
+ "rescale_betas_zero_snr": true,
13
+ "sample_max_value": 1.0,
14
+ "set_alpha_to_one": true,
15
+ "steps_offset": 1,
16
+ "thresholding": false,
17
+ "timestep_spacing": "leading",
18
+ "trained_betas": null
19
+ }
text_encoder/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/patrick/.cache/huggingface/hub/models--diffusers--i2vgen-xl/snapshots/f2430483897b1745040925549ab549dcfbd9ce86/text_encoder",
3
+ "architectures": [
4
+ "CLIPTextModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "dropout": 0.0,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_size": 1024,
12
+ "initializer_factor": 1.0,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 77,
17
+ "model_type": "clip_text_model",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "pad_token_id": 1,
21
+ "projection_dim": 1024,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.38.0.dev0",
24
+ "vocab_size": 49408
25
+ }
text_encoder/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd94a7ea6922e8028227567fe14e04d2989eec31c482e0813e9006afea6637f1
3
+ size 1411983168
tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "49406": {
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "49407": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ }
20
+ },
21
+ "bos_token": "<|startoftext|>",
22
+ "clean_up_tokenization_spaces": true,
23
+ "do_lower_case": true,
24
+ "eos_token": "<|endoftext|>",
25
+ "errors": "replace",
26
+ "model_max_length": 77,
27
+ "pad_token": "<|endoftext|>",
28
+ "tokenizer_class": "CLIPTokenizer",
29
+ "unk_token": "<|endoftext|>"
30
+ }
tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
unet/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "I2VGenXLUNet",
3
+ "_diffusers_version": "0.26.0.dev0",
4
+ "_name_or_path": "/home/patrick/.cache/huggingface/hub/models--diffusers--i2vgen-xl/snapshots/f2430483897b1745040925549ab549dcfbd9ce86/unet",
5
+ "block_out_channels": [
6
+ 320,
7
+ 640,
8
+ 1280,
9
+ 1280
10
+ ],
11
+ "cross_attention_dim": 1024,
12
+ "down_block_types": [
13
+ "CrossAttnDownBlock3D",
14
+ "CrossAttnDownBlock3D",
15
+ "CrossAttnDownBlock3D",
16
+ "DownBlock3D"
17
+ ],
18
+ "in_channels": 4,
19
+ "layers_per_block": 2,
20
+ "norm_num_groups": 32,
21
+ "num_attention_heads": 64,
22
+ "out_channels": 4,
23
+ "sample_size": 32,
24
+ "up_block_types": [
25
+ "UpBlock3D",
26
+ "CrossAttnUpBlock3D",
27
+ "CrossAttnUpBlock3D",
28
+ "CrossAttnUpBlock3D"
29
+ ]
30
+ }
unet/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e7c73b3ff159580a1a6535b1ccb473b09a2f40853c03f5d546db70632456ab8
3
+ size 5682063336
vae/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.26.0.dev0",
4
+ "_name_or_path": "/home/patrick/.cache/huggingface/hub/models--diffusers--i2vgen-xl/snapshots/f2430483897b1745040925549ab549dcfbd9ce86/vae",
5
+ "act_fn": "silu",
6
+ "block_out_channels": [
7
+ 128,
8
+ 256,
9
+ 512,
10
+ 512
11
+ ],
12
+ "down_block_types": [
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "DownEncoderBlock2D",
16
+ "DownEncoderBlock2D"
17
+ ],
18
+ "force_upcast": true,
19
+ "in_channels": 3,
20
+ "latent_channels": 4,
21
+ "layers_per_block": 2,
22
+ "norm_num_groups": 32,
23
+ "out_channels": 3,
24
+ "sample_size": 768,
25
+ "scaling_factor": 0.18125,
26
+ "up_block_types": [
27
+ "UpDecoderBlock2D",
28
+ "UpDecoderBlock2D",
29
+ "UpDecoderBlock2D",
30
+ "UpDecoderBlock2D"
31
+ ]
32
+ }
vae/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2aa1f43011b553a4cba7f37456465cdbd48aab7b54b9348b890e8058ea7683ec
3
+ size 334643268