mt5-base-chinese-qg / README.md
vivicai's picture
Update README.md
90f1d65
<h3 align="center">
<p>MT5 Base Model for Chinese Question Generation</p>
</h3>
<h3 align="center">
<p>基于mt5的中文问题生成任务</p>
</h3>
#### 可以通过安装question-generation包开始用
```
pip install question-generation
```
使用方法请参考github项目:https://github.com/algolet/question_generation
#### 在线使用
可以直接在线使用我们的模型:https://www.algolet.com/applications/qg
#### 通过transformers调用
``` python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("algolet/mt5-base-chinese-qg")
model = AutoModelForSeq2SeqLM.from_pretrained("algolet/mt5-base-chinese-qg")
model.eval()
text = "在一个寒冷的冬天,赶集完回家的农夫在路边发现了一条冻僵了的蛇。他很可怜蛇,就把它放在怀里。当他身上的热气把蛇温暖以后,蛇很快苏醒了,露出了残忍的本性,给了农夫致命的伤害——咬了农夫一口。农夫临死之前说:“我竟然救了一条可怜的毒蛇,就应该受到这种报应啊!”"
text = "question generation: " + text
inputs = tokenizer(text,
return_tensors='pt',
truncation=True,
max_length=512)
with torch.no_grad():
outs = model.generate(input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=128,
no_repeat_ngram_size=4,
num_beams=4)
question = tokenizer.decode(outs[0], skip_special_tokens=True)
questions = [q.strip() for q in question.split("<sep>") if len(q.strip()) > 0]
print(questions)
['在寒冷的冬天,农夫在哪里发现了一条可怜的蛇?', '农夫是如何看待蛇的?', '当农夫遇到蛇时,他做了什么?']
```
#### 指标
rouge-1: 0.4041
rouge-2: 0.2104
rouge-l: 0.3843
---
language:
- zh
tags:
- mt5
- question generation
metrics:
- rouge
---