|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: text-translit-detector-ru |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# text-translit-detector-ru |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0632 |
|
- Mean Distance: 0 |
|
- Max Distance: 1 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 15 |
|
- eval_batch_size: 15 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Distance | Max Distance | |
|
|:-------------:|:-----:|:------:|:---------------:|:-------------:|:------------:| |
|
| 0.8541 | 1.0 | 2664 | 0.3404 | 0 | 1 | |
|
| 0.0451 | 2.0 | 5328 | 0.0605 | 0 | 1 | |
|
| 0.0112 | 3.0 | 7992 | 0.0411 | 0 | 1 | |
|
| 0.0068 | 4.0 | 10656 | 0.0205 | 0 | 1 | |
|
| 0.007 | 5.0 | 13320 | 0.0242 | 0 | 1 | |
|
| 0.0022 | 6.0 | 15984 | 0.0272 | 0 | 1 | |
|
| 0.0054 | 7.0 | 18648 | 0.0080 | 0 | 1 | |
|
| 0.0036 | 8.0 | 21312 | 0.0252 | 0 | 1 | |
|
| 0.0039 | 9.0 | 23976 | 0.0210 | 0 | 1 | |
|
| 0.0026 | 10.0 | 26640 | 0.0170 | 0 | 1 | |
|
| 0.0026 | 11.0 | 29304 | 0.0043 | 0 | 1 | |
|
| 0.0029 | 12.0 | 31968 | 0.0135 | 0 | 1 | |
|
| 0.0011 | 13.0 | 34632 | 0.0313 | 0 | 1 | |
|
| 0.0017 | 14.0 | 37296 | 0.0353 | 0 | 1 | |
|
| 0.0014 | 15.0 | 39960 | 0.0117 | 0 | 1 | |
|
| 0.0014 | 16.0 | 42624 | 0.0140 | 0 | 1 | |
|
| 0.0013 | 17.0 | 45288 | 0.0220 | 0 | 1 | |
|
| 0.0009 | 18.0 | 47952 | 0.0247 | 0 | 1 | |
|
| 0.0017 | 19.0 | 50616 | 0.0322 | 0 | 1 | |
|
| 0.0022 | 20.0 | 53280 | 0.0314 | 0 | 1 | |
|
| 0.0006 | 21.0 | 55944 | 0.0305 | 0 | 1 | |
|
| 0.001 | 22.0 | 58608 | 0.0292 | 0 | 1 | |
|
| 0.0008 | 23.0 | 61272 | 0.0373 | 0 | 1 | |
|
| 0.0008 | 24.0 | 63936 | 0.0309 | 0 | 1 | |
|
| 0.0008 | 25.0 | 66600 | 0.0385 | 0 | 1 | |
|
| 0.0014 | 26.0 | 69264 | 0.0134 | 0 | 1 | |
|
| 0.0004 | 27.0 | 71928 | 0.0239 | 0 | 1 | |
|
| 0.0011 | 28.0 | 74592 | 0.0164 | 0 | 1 | |
|
| 0.0002 | 29.0 | 77256 | 0.0186 | 0 | 1 | |
|
| 0.0001 | 30.0 | 79920 | 0.0298 | 0 | 1 | |
|
| 0.0008 | 31.0 | 82584 | 0.0277 | 0 | 1 | |
|
| 0.0003 | 32.0 | 85248 | 0.0377 | 0 | 1 | |
|
| 0.0003 | 33.0 | 87912 | 0.0354 | 0 | 1 | |
|
| 0.0007 | 34.0 | 90576 | 0.0585 | 0 | 1 | |
|
| 0.0005 | 35.0 | 93240 | 0.0568 | 0 | 1 | |
|
| 0.0001 | 36.0 | 95904 | 0.0567 | 0 | 1 | |
|
| 0.0009 | 37.0 | 98568 | 0.0605 | 0 | 1 | |
|
| 0.0002 | 38.0 | 101232 | 0.0613 | 0 | 1 | |
|
| 0.0002 | 39.0 | 103896 | 0.0563 | 0 | 1 | |
|
| 0.0002 | 40.0 | 106560 | 0.0632 | 0 | 1 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|