cause-biobert-biocause

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5157
  • Precision: 0.2230
  • Recall: 0.4277
  • F1: 0.2931
  • Accuracy: 0.8241
  • Cause P: 0.2230
  • Cause R: 0.4277
  • Cause F1: 0.2931

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Cause P Cause R Cause F1
0.6993 0.25 20 0.6314 0.0556 0.1698 0.0837 0.7587 0.0556 0.1698 0.0837
0.6993 0.5 40 0.5747 0.0826 0.2327 0.1219 0.6524 0.0826 0.2327 0.1219
0.6993 0.75 60 0.4896 0.1086 0.3899 0.1699 0.7420 0.1086 0.3899 0.1699
0.6993 1.0 80 0.4554 0.1497 0.3145 0.2028 0.7840 0.1497 0.3145 0.2028
0.6993 1.25 100 0.4952 0.1980 0.3774 0.2597 0.8353 0.1980 0.3774 0.2597
0.6993 1.5 120 0.4837 0.1749 0.3774 0.2390 0.7984 0.1749 0.3774 0.2390
0.6993 1.75 140 0.4786 0.1873 0.4088 0.2569 0.7991 0.1873 0.4088 0.2569
0.6993 2.0 160 0.5157 0.2230 0.4277 0.2931 0.8241 0.2230 0.4277 0.2931

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.1.post100
  • Datasets 2.20.0
  • Tokenizers 0.15.1
Downloads last month
5
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for alenatz/cause-biobert-biocause

Finetuned
(14)
this model