ppo-LunarLander-v2 / config.json
alelola's picture
First try
f0ffeb9
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f68f2669440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f68f26694d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f68f2669560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f68f26695f0>", "_build": "<function ActorCriticPolicy._build at 0x7f68f2669680>", "forward": "<function ActorCriticPolicy.forward at 0x7f68f2669710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f68f26697a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f68f2669830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f68f26698c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f68f2669950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f68f26699e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f68f26b8510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651772016.8040814, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNRRr4MaY0/apf/vqF5BL/nOEK+kDtevgAAAAAAAAAARiQkvgrPTDzC8dw6Xb1NuQvM1L2xCUY6AACAPwAAgD9AcFQ+BZPAPNrzeLlB2v63SG5SPtjZojgAAIA/AACAP4B2Br6Fc5A68saKO1b5UbmZCYa8TRA6OgAAgD8AAIA/vpWOvs0/Pj64T2w+nvsAvjl9Ij0xw6q8AAAAAAAAAABGtDy+tP92P06Zcr1EmWO+jU2FvYVCSz0AAAAAAAAAADrZor7dki29Ybi7unyMfrnIRng+9nDgOQAAgD8AAIA/QNKqvSlIfbrtW9mzQDj1r4wEDToSZbszAACAPwAAgD8Al149j1J+utYPYrhCZkSzqWUXuygfhDcAAIA/AACAP4adYT4KnTe7THIWN1Zh3bP4PWS8yiIytgAAgD8AAIA/GlNBPY/CL7oK50A72guMOAfEgzs4huO5AACAPwAAgD8CxKK+LxYjPU5xHD6Vnza+osfgPMcHDzwAAAAAAAAAAC32ij5fY748Lig/O4Q00zko31I+uvRpugAAgD8AAIA/TSZoPdzdND2LwgC7PftIvmG887yYSc46AAAAAAAAAABzKu09w7EIuljDMzr+NS810zW1ukIBVLkAAAAAAACAP1pMtr1cG0u6WjUHumdVLzOGRYo6mDxJswAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILgPOUrJYO0CUhpRSlIwBbJRNIwGMAXSUR0CDK9rrxAjZdX2UKGgGaAloD0MInmD/dW4VXkCUhpRSlGgVTegDaBZHQIMyuB4D9wZ1fZQoaAZoCWgPQwiYbaetkblgQJSGlFKUaBVN6ANoFkdAgzX8BMi8nXV9lChoBmgJaA9DCMNF7unq4llAlIaUUpRoFU3oA2gWR0CDNl3Hq/ucdX2UKGgGaAloD0MIGohlM4d1YECUhpRSlGgVTegDaBZHQIM+Wv8qFyt1fZQoaAZoCWgPQwhkyoeganleQJSGlFKUaBVN6ANoFkdAg0A48lolEHV9lChoBmgJaA9DCJ0Te2gfJVxAlIaUUpRoFU3oA2gWR0CDRZz6JqIrdX2UKGgGaAloD0MIvYqMDsiPYECUhpRSlGgVTegDaBZHQINIucUdq+J1fZQoaAZoCWgPQwiKA+j3/TsEwJSGlFKUaBVNSQFoFkdAg0+g1Nxlx3V9lChoBmgJaA9DCKuxhLWxKmJAlIaUUpRoFU3oA2gWR0CDXUiXY150dX2UKGgGaAloD0MIICi37XsFYUCUhpRSlGgVTegDaBZHQINmT52yLQ51fZQoaAZoCWgPQwj1gk9zchJiQJSGlFKUaBVN6ANoFkdAg2ykFfReC3V9lChoBmgJaA9DCIU/w5s1WCdAlIaUUpRoFUvyaBZHQINtxm/WUbF1fZQoaAZoCWgPQwgTEJNwocFhQJSGlFKUaBVN6ANoFkdAg2/Q1R+BpnV9lChoBmgJaA9DCIl5VtKKYFhAlIaUUpRoFU3oA2gWR0CDcGFaB7NTdX2UKGgGaAloD0MIn1kSoKZeM8CUhpRSlGgVTRABaBZHQIOM90tAcDN1fZQoaAZoCWgPQwg9f9qoTqRXQJSGlFKUaBVN6ANoFkdAg5vZGjKxLXV9lChoBmgJaA9DCDPd66S+olpAlIaUUpRoFU3oA2gWR0CDoHNW2gFpdX2UKGgGaAloD0MISIjyBa3xYUCUhpRSlGgVTegDaBZHQIOioeHSF491fZQoaAZoCWgPQwgKuyh64MJjQJSGlFKUaBVN6ANoFkdAg6iScCo0h3V9lChoBmgJaA9DCO55/rRRkmFAlIaUUpRoFU3oA2gWR0CDq5Kp1ie/dX2UKGgGaAloD0MIHXV0XI0aWECUhpRSlGgVTegDaBZHQIOr8PSUkfN1fZQoaAZoCWgPQwiPp+UHrqdfQJSGlFKUaBVN6ANoFkdAg7Pc3dbgTHV9lChoBmgJaA9DCFKazeMwPFtAlIaUUpRoFU3oA2gWR0CDteF36hxpdX2UKGgGaAloD0MI424QrRVwYkCUhpRSlGgVTegDaBZHQIRvc0tRNyp1fZQoaAZoCWgPQwgaFqOutY1hQJSGlFKUaBVN6ANoFkdAhHKm7J4jbHV9lChoBmgJaA9DCDhlbr4RYTNAlIaUUpRoFUvjaBZHQISBnpY9xId1fZQoaAZoCWgPQwjPaRZod8ZhQJSGlFKUaBVN6ANoFkdAhIYcFyJbdXV9lChoBmgJaA9DCPLqHAOymVVAlIaUUpRoFU3oA2gWR0CEjb+c6NlzdX2UKGgGaAloD0MINbOWAlKQY0CUhpRSlGgVTegDaBZHQISTDbQC0Wx1fZQoaAZoCWgPQwgCRSxi2GFlQJSGlFKUaBVN6ANoFkdAhJXALZzxPXV9lChoBmgJaA9DCKUvhJz3WWJAlIaUUpRoFU3oA2gWR0CElkcZLqUvdX2UKGgGaAloD0MIWTLH8q7qEECUhpRSlGgVS+NoFkdAhJ3oRAbADnV9lChoBmgJaA9DCPJ8BtSbqSLAlIaUUpRoFUvhaBZHQIStVuLrHEN1fZQoaAZoCWgPQwiFmEuqNp1lQJSGlFKUaBVN6ANoFkdAhLDt83Mpw3V9lChoBmgJaA9DCAWHF0Sk1GBAlIaUUpRoFU3oA2gWR0CEveK1og3cdX2UKGgGaAloD0MIISHKF7SuYECUhpRSlGgVTegDaBZHQITCBVbRne11fZQoaAZoCWgPQwhjf9k9eTtdQJSGlFKUaBVN6ANoFkdAhMPv8Q7LdXV9lChoBmgJaA9DCEKvP4nPVGBAlIaUUpRoFU3oA2gWR0CEyTTz/ZM+dX2UKGgGaAloD0MITrnCu9xoYUCUhpRSlGgVTegDaBZHQITLuKZUkv91fZQoaAZoCWgPQwhLlL2lnI1iQJSGlFKUaBVN6ANoFkdAhMv/LLZBcHV9lChoBmgJaA9DCIavr3UpvGBAlIaUUpRoFU3oA2gWR0CE0roEB8x9dX2UKGgGaAloD0MI1zGuuDhaF8CUhpRSlGgVS+JoFkdAhNfN+9allHV9lChoBmgJaA9DCE1J1uFowWJAlIaUUpRoFU3oA2gWR0CE2U/ub7TEdX2UKGgGaAloD0MI4q3zb5e0ZUCUhpRSlGgVTegDaBZHQITcSWeHzpZ1fZQoaAZoCWgPQwgKLIApA486QJSGlFKUaBVL02gWR0CE36PT5O8DdX2UKGgGaAloD0MI2zUhrTFabUCUhpRSlGgVTZICaBZHQITivZwn6VN1fZQoaAZoCWgPQwhz2lNyTlZiQJSGlFKUaBVN6ANoFkdAhOpNc4YJmnV9lChoBmgJaA9DCEzBGmdTlGJAlIaUUpRoFU3oA2gWR0CE9fCE6DGtdX2UKGgGaAloD0MIc/bOaKtiXUCUhpRSlGgVTegDaBZHQIT7+0JF9a51fZQoaAZoCWgPQwgw2XiwRUFgQJSGlFKUaBVN6ANoFkdAhP+l+mWMTHV9lChoBmgJaA9DCDTz5JoCzGBAlIaUUpRoFU3oA2gWR0CFGpY7q6e5dX2UKGgGaAloD0MIwqVjzjP9YUCUhpRSlGgVTegDaBZHQIUeXh4t6HF1fZQoaAZoCWgPQwia7nVSX9xwQJSGlFKUaBVNWgJoFkdAhSVuPeYUnHV9lChoBmgJaA9DCKinj8AfImZAlIaUUpRoFU3oA2gWR0CFK73UQTVUdX2UKGgGaAloD0MIHcpQFVM5XkCUhpRSlGgVTegDaBZHQIUyMsDnvDx1fZQoaAZoCWgPQwj/lgD8U69fQJSGlFKUaBVN6ANoFkdAhTfzBRAKOXV9lChoBmgJaA9DCJuNlZjnrmJAlIaUUpRoFU3oA2gWR0CFOtvNNahYdX2UKGgGaAloD0MI7kJzncYrY0CUhpRSlGgVTegDaBZHQIVDY6EJ0GN1fZQoaAZoCWgPQwhffNEer4hjQJSGlFKUaBVN6ANoFkdAhUlx5kbxVnV9lChoBmgJaA9DCHCZ02UxA2NAlIaUUpRoFU3oA2gWR0CFSzVTaTOgdX2UKGgGaAloD0MIb/JbdLI7Y0CUhpRSlGgVTegDaBZHQIYCjtZ3cHp1fZQoaAZoCWgPQwhksrj/yJNkQJSGlFKUaBVN6ANoFkdAhgl57XxvvXV9lChoBmgJaA9DCOgRo+cW4jtAlIaUUpRoFUvYaBZHQIYObynUDuB1fZQoaAZoCWgPQwgEritmhHhfQJSGlFKUaBVN6ANoFkdAhhFgOjIq9XV9lChoBmgJaA9DCO+rcqHyL+Y/lIaUUpRoFUvbaBZHQIYVxSeiBXl1fZQoaAZoCWgPQwhNLPAV3QVcQJSGlFKUaBVN6ANoFkdAhhwOW0JF9nV9lChoBmgJaA9DCHbicrwCdWFAlIaUUpRoFU3oA2gWR0CGIUgYgq3FdX2UKGgGaAloD0MIlrGhm31ZY0CUhpRSlGgVTegDaBZHQIYkRb+tKZl1fZQoaAZoCWgPQwhPHhZqTec/QJSGlFKUaBVL62gWR0CGOdv3JxNqdX2UKGgGaAloD0MIiGnf3N9EZECUhpRSlGgVTegDaBZHQIY7rQ3PzFx1fZQoaAZoCWgPQwj/If32dTdwQJSGlFKUaBVNyQFoFkdAhj33wLE1mHV9lChoBmgJaA9DCOtTjsliImVAlIaUUpRoFU3oA2gWR0CGPwhA4XGfdX2UKGgGaAloD0MIY/GbwkqBaECUhpRSlGgVTSgBaBZHQIZDcMCtA9p1fZQoaAZoCWgPQwiTOCuiJg5iQJSGlFKUaBVN6ANoFkdAhkRcZ1mrbXV9lChoBmgJaA9DCDy858Byq2BAlIaUUpRoFU3oA2gWR0CGSOPQOWjXdX2UKGgGaAloD0MIJ4Oj5FV1Z0CUhpRSlGgVTegDaBZHQIZNKX4TK1Z1fZQoaAZoCWgPQwga+FEN+3JeQJSGlFKUaBVN6ANoFkdAhlFtE5Qxe3V9lChoBmgJaA9DCBIWFXG6wmFAlIaUUpRoFU3oA2gWR0CGU31Iy0rtdX2UKGgGaAloD0MIgNWRI50JJsCUhpRSlGgVS+JoFkdAhlYKN6w+uHV9lChoBmgJaA9DCNWXpZ0a/WBAlIaUUpRoFU3oA2gWR0CGX1VkMCtBdX2UKGgGaAloD0MIfNY1Wg54YkCUhpRSlGgVTegDaBZHQIZkBvLowEh1fZQoaAZoCWgPQwhfC3pvDDkqwJSGlFKUaBVL4GgWR0CGaLWPLgXNdX2UKGgGaAloD0MINpIE4Qo/XUCUhpRSlGgVTegDaBZHQIZrDt/nW8R1fZQoaAZoCWgPQwh9PzVeuhUzQJSGlFKUaBVL/GgWR0CGbxk8RtgsdX2UKGgGaAloD0MIglZgyOpjY0CUhpRSlGgVTegDaBZHQIZzT6tT1kF1fZQoaAZoCWgPQwiU2/Y96utfQJSGlFKUaBVN6ANoFkdAhngabF0gbXV9lChoBmgJaA9DCCfChqfXyWBAlIaUUpRoFU3oA2gWR0CGfw3vQWvbdX2UKGgGaAloD0MI48Yt5ufmbkCUhpRSlGgVTTICaBZHQIZ/R2t+1Bt1fZQoaAZoCWgPQwjzOXe7Xpo2wJSGlFKUaBVNOwFoFkdAho1yzXz19XV9lChoBmgJaA9DCESi0LLuImRAlIaUUpRoFU31AmgWR0CGjuHzH0btdX2UKGgGaAloD0MI9b7xtWdZXUCUhpRSlGgVTegDaBZHQIafZ2r4nF51fZQoaAZoCWgPQwgNwXEZNxZdQJSGlFKUaBVN6ANoFkdAhqFKb8WKuXV9lChoBmgJaA9DCIc2ABsQzl9AlIaUUpRoFU3oA2gWR0CGo5SXt0FKdX2UKGgGaAloD0MIjzaOWIvYXkCUhpRSlGgVTegDaBZHQIakror4Fid1fZQoaAZoCWgPQwgpWrkXmCpTQJSGlFKUaBVN6ANoFkdAhrbVCHARCnV9lChoBmgJaA9DCCTTodNzkGJAlIaUUpRoFU3oA2gWR0CGvOiW3Sa3dX2UKGgGaAloD0MIfVhv1AqrIkCUhpRSlGgVS+doFkdAhr7oYvWYnnV9lChoBmgJaA9DCHhCrz+JtmdAlIaUUpRoFU3oA2gWR0CG0F4XXRPXdX2UKGgGaAloD0MIOllqvd+uWUCUhpRSlGgVTegDaBZHQIbWlM9KVY91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}