First try
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo-LunarLander-v2
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 197.02 +/- 73.63
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo-LunarLander-v2** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo-LunarLander-v2** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f68f2669440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f68f26694d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f68f2669560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f68f26695f0>", "_build": "<function ActorCriticPolicy._build at 0x7f68f2669680>", "forward": "<function ActorCriticPolicy.forward at 0x7f68f2669710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f68f26697a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f68f2669830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f68f26698c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f68f2669950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f68f26699e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f68f26b8510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651772016.8040814, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNRRr4MaY0/apf/vqF5BL/nOEK+kDtevgAAAAAAAAAARiQkvgrPTDzC8dw6Xb1NuQvM1L2xCUY6AACAPwAAgD9AcFQ+BZPAPNrzeLlB2v63SG5SPtjZojgAAIA/AACAP4B2Br6Fc5A68saKO1b5UbmZCYa8TRA6OgAAgD8AAIA/vpWOvs0/Pj64T2w+nvsAvjl9Ij0xw6q8AAAAAAAAAABGtDy+tP92P06Zcr1EmWO+jU2FvYVCSz0AAAAAAAAAADrZor7dki29Ybi7unyMfrnIRng+9nDgOQAAgD8AAIA/QNKqvSlIfbrtW9mzQDj1r4wEDToSZbszAACAPwAAgD8Al149j1J+utYPYrhCZkSzqWUXuygfhDcAAIA/AACAP4adYT4KnTe7THIWN1Zh3bP4PWS8yiIytgAAgD8AAIA/GlNBPY/CL7oK50A72guMOAfEgzs4huO5AACAPwAAgD8CxKK+LxYjPU5xHD6Vnza+osfgPMcHDzwAAAAAAAAAAC32ij5fY748Lig/O4Q00zko31I+uvRpugAAgD8AAIA/TSZoPdzdND2LwgC7PftIvmG887yYSc46AAAAAAAAAABzKu09w7EIuljDMzr+NS810zW1ukIBVLkAAAAAAACAP1pMtr1cG0u6WjUHumdVLzOGRYo6mDxJswAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILgPOUrJYO0CUhpRSlIwBbJRNIwGMAXSUR0CDK9rrxAjZdX2UKGgGaAloD0MInmD/dW4VXkCUhpRSlGgVTegDaBZHQIMyuB4D9wZ1fZQoaAZoCWgPQwiYbaetkblgQJSGlFKUaBVN6ANoFkdAgzX8BMi8nXV9lChoBmgJaA9DCMNF7unq4llAlIaUUpRoFU3oA2gWR0CDNl3Hq/ucdX2UKGgGaAloD0MIGohlM4d1YECUhpRSlGgVTegDaBZHQIM+Wv8qFyt1fZQoaAZoCWgPQwhkyoeganleQJSGlFKUaBVN6ANoFkdAg0A48lolEHV9lChoBmgJaA9DCJ0Te2gfJVxAlIaUUpRoFU3oA2gWR0CDRZz6JqIrdX2UKGgGaAloD0MIvYqMDsiPYECUhpRSlGgVTegDaBZHQINIucUdq+J1fZQoaAZoCWgPQwiKA+j3/TsEwJSGlFKUaBVNSQFoFkdAg0+g1Nxlx3V9lChoBmgJaA9DCKuxhLWxKmJAlIaUUpRoFU3oA2gWR0CDXUiXY150dX2UKGgGaAloD0MIICi37XsFYUCUhpRSlGgVTegDaBZHQINmT52yLQ51fZQoaAZoCWgPQwj1gk9zchJiQJSGlFKUaBVN6ANoFkdAg2ykFfReC3V9lChoBmgJaA9DCIU/w5s1WCdAlIaUUpRoFUvyaBZHQINtxm/WUbF1fZQoaAZoCWgPQwgTEJNwocFhQJSGlFKUaBVN6ANoFkdAg2/Q1R+BpnV9lChoBmgJaA9DCIl5VtKKYFhAlIaUUpRoFU3oA2gWR0CDcGFaB7NTdX2UKGgGaAloD0MIn1kSoKZeM8CUhpRSlGgVTRABaBZHQIOM90tAcDN1fZQoaAZoCWgPQwg9f9qoTqRXQJSGlFKUaBVN6ANoFkdAg5vZGjKxLXV9lChoBmgJaA9DCDPd66S+olpAlIaUUpRoFU3oA2gWR0CDoHNW2gFpdX2UKGgGaAloD0MISIjyBa3xYUCUhpRSlGgVTegDaBZHQIOioeHSF491fZQoaAZoCWgPQwgKuyh64MJjQJSGlFKUaBVN6ANoFkdAg6iScCo0h3V9lChoBmgJaA9DCO55/rRRkmFAlIaUUpRoFU3oA2gWR0CDq5Kp1ie/dX2UKGgGaAloD0MIHXV0XI0aWECUhpRSlGgVTegDaBZHQIOr8PSUkfN1fZQoaAZoCWgPQwiPp+UHrqdfQJSGlFKUaBVN6ANoFkdAg7Pc3dbgTHV9lChoBmgJaA9DCFKazeMwPFtAlIaUUpRoFU3oA2gWR0CDteF36hxpdX2UKGgGaAloD0MI424QrRVwYkCUhpRSlGgVTegDaBZHQIRvc0tRNyp1fZQoaAZoCWgPQwgaFqOutY1hQJSGlFKUaBVN6ANoFkdAhHKm7J4jbHV9lChoBmgJaA9DCDhlbr4RYTNAlIaUUpRoFUvjaBZHQISBnpY9xId1fZQoaAZoCWgPQwjPaRZod8ZhQJSGlFKUaBVN6ANoFkdAhIYcFyJbdXV9lChoBmgJaA9DCPLqHAOymVVAlIaUUpRoFU3oA2gWR0CEjb+c6NlzdX2UKGgGaAloD0MINbOWAlKQY0CUhpRSlGgVTegDaBZHQISTDbQC0Wx1fZQoaAZoCWgPQwgCRSxi2GFlQJSGlFKUaBVN6ANoFkdAhJXALZzxPXV9lChoBmgJaA9DCKUvhJz3WWJAlIaUUpRoFU3oA2gWR0CElkcZLqUvdX2UKGgGaAloD0MIWTLH8q7qEECUhpRSlGgVS+NoFkdAhJ3oRAbADnV9lChoBmgJaA9DCPJ8BtSbqSLAlIaUUpRoFUvhaBZHQIStVuLrHEN1fZQoaAZoCWgPQwiFmEuqNp1lQJSGlFKUaBVN6ANoFkdAhLDt83Mpw3V9lChoBmgJaA9DCAWHF0Sk1GBAlIaUUpRoFU3oA2gWR0CEveK1og3cdX2UKGgGaAloD0MIISHKF7SuYECUhpRSlGgVTegDaBZHQITCBVbRne11fZQoaAZoCWgPQwhjf9k9eTtdQJSGlFKUaBVN6ANoFkdAhMPv8Q7LdXV9lChoBmgJaA9DCEKvP4nPVGBAlIaUUpRoFU3oA2gWR0CEyTTz/ZM+dX2UKGgGaAloD0MITrnCu9xoYUCUhpRSlGgVTegDaBZHQITLuKZUkv91fZQoaAZoCWgPQwhLlL2lnI1iQJSGlFKUaBVN6ANoFkdAhMv/LLZBcHV9lChoBmgJaA9DCIavr3UpvGBAlIaUUpRoFU3oA2gWR0CE0roEB8x9dX2UKGgGaAloD0MI1zGuuDhaF8CUhpRSlGgVS+JoFkdAhNfN+9allHV9lChoBmgJaA9DCE1J1uFowWJAlIaUUpRoFU3oA2gWR0CE2U/ub7TEdX2UKGgGaAloD0MI4q3zb5e0ZUCUhpRSlGgVTegDaBZHQITcSWeHzpZ1fZQoaAZoCWgPQwgKLIApA486QJSGlFKUaBVL02gWR0CE36PT5O8DdX2UKGgGaAloD0MI2zUhrTFabUCUhpRSlGgVTZICaBZHQITivZwn6VN1fZQoaAZoCWgPQwhz2lNyTlZiQJSGlFKUaBVN6ANoFkdAhOpNc4YJmnV9lChoBmgJaA9DCEzBGmdTlGJAlIaUUpRoFU3oA2gWR0CE9fCE6DGtdX2UKGgGaAloD0MIc/bOaKtiXUCUhpRSlGgVTegDaBZHQIT7+0JF9a51fZQoaAZoCWgPQwgw2XiwRUFgQJSGlFKUaBVN6ANoFkdAhP+l+mWMTHV9lChoBmgJaA9DCDTz5JoCzGBAlIaUUpRoFU3oA2gWR0CFGpY7q6e5dX2UKGgGaAloD0MIwqVjzjP9YUCUhpRSlGgVTegDaBZHQIUeXh4t6HF1fZQoaAZoCWgPQwia7nVSX9xwQJSGlFKUaBVNWgJoFkdAhSVuPeYUnHV9lChoBmgJaA9DCKinj8AfImZAlIaUUpRoFU3oA2gWR0CFK73UQTVUdX2UKGgGaAloD0MIHcpQFVM5XkCUhpRSlGgVTegDaBZHQIUyMsDnvDx1fZQoaAZoCWgPQwj/lgD8U69fQJSGlFKUaBVN6ANoFkdAhTfzBRAKOXV9lChoBmgJaA9DCJuNlZjnrmJAlIaUUpRoFU3oA2gWR0CFOtvNNahYdX2UKGgGaAloD0MI7kJzncYrY0CUhpRSlGgVTegDaBZHQIVDY6EJ0GN1fZQoaAZoCWgPQwhffNEer4hjQJSGlFKUaBVN6ANoFkdAhUlx5kbxVnV9lChoBmgJaA9DCHCZ02UxA2NAlIaUUpRoFU3oA2gWR0CFSzVTaTOgdX2UKGgGaAloD0MIb/JbdLI7Y0CUhpRSlGgVTegDaBZHQIYCjtZ3cHp1fZQoaAZoCWgPQwhksrj/yJNkQJSGlFKUaBVN6ANoFkdAhgl57XxvvXV9lChoBmgJaA9DCOgRo+cW4jtAlIaUUpRoFUvYaBZHQIYObynUDuB1fZQoaAZoCWgPQwgEritmhHhfQJSGlFKUaBVN6ANoFkdAhhFgOjIq9XV9lChoBmgJaA9DCO+rcqHyL+Y/lIaUUpRoFUvbaBZHQIYVxSeiBXl1fZQoaAZoCWgPQwhNLPAV3QVcQJSGlFKUaBVN6ANoFkdAhhwOW0JF9nV9lChoBmgJaA9DCHbicrwCdWFAlIaUUpRoFU3oA2gWR0CGIUgYgq3FdX2UKGgGaAloD0MIlrGhm31ZY0CUhpRSlGgVTegDaBZHQIYkRb+tKZl1fZQoaAZoCWgPQwhPHhZqTec/QJSGlFKUaBVL62gWR0CGOdv3JxNqdX2UKGgGaAloD0MIiGnf3N9EZECUhpRSlGgVTegDaBZHQIY7rQ3PzFx1fZQoaAZoCWgPQwj/If32dTdwQJSGlFKUaBVNyQFoFkdAhj33wLE1mHV9lChoBmgJaA9DCOtTjsliImVAlIaUUpRoFU3oA2gWR0CGPwhA4XGfdX2UKGgGaAloD0MIY/GbwkqBaECUhpRSlGgVTSgBaBZHQIZDcMCtA9p1fZQoaAZoCWgPQwiTOCuiJg5iQJSGlFKUaBVN6ANoFkdAhkRcZ1mrbXV9lChoBmgJaA9DCDy858Byq2BAlIaUUpRoFU3oA2gWR0CGSOPQOWjXdX2UKGgGaAloD0MIJ4Oj5FV1Z0CUhpRSlGgVTegDaBZHQIZNKX4TK1Z1fZQoaAZoCWgPQwga+FEN+3JeQJSGlFKUaBVN6ANoFkdAhlFtE5Qxe3V9lChoBmgJaA9DCBIWFXG6wmFAlIaUUpRoFU3oA2gWR0CGU31Iy0rtdX2UKGgGaAloD0MIgNWRI50JJsCUhpRSlGgVS+JoFkdAhlYKN6w+uHV9lChoBmgJaA9DCNWXpZ0a/WBAlIaUUpRoFU3oA2gWR0CGX1VkMCtBdX2UKGgGaAloD0MIfNY1Wg54YkCUhpRSlGgVTegDaBZHQIZkBvLowEh1fZQoaAZoCWgPQwhfC3pvDDkqwJSGlFKUaBVL4GgWR0CGaLWPLgXNdX2UKGgGaAloD0MINpIE4Qo/XUCUhpRSlGgVTegDaBZHQIZrDt/nW8R1fZQoaAZoCWgPQwh9PzVeuhUzQJSGlFKUaBVL/GgWR0CGbxk8RtgsdX2UKGgGaAloD0MIglZgyOpjY0CUhpRSlGgVTegDaBZHQIZzT6tT1kF1fZQoaAZoCWgPQwiU2/Y96utfQJSGlFKUaBVN6ANoFkdAhngabF0gbXV9lChoBmgJaA9DCCfChqfXyWBAlIaUUpRoFU3oA2gWR0CGfw3vQWvbdX2UKGgGaAloD0MI48Yt5ufmbkCUhpRSlGgVTTICaBZHQIZ/R2t+1Bt1fZQoaAZoCWgPQwjzOXe7Xpo2wJSGlFKUaBVNOwFoFkdAho1yzXz19XV9lChoBmgJaA9DCESi0LLuImRAlIaUUpRoFU31AmgWR0CGjuHzH0btdX2UKGgGaAloD0MI9b7xtWdZXUCUhpRSlGgVTegDaBZHQIafZ2r4nF51fZQoaAZoCWgPQwgNwXEZNxZdQJSGlFKUaBVN6ANoFkdAhqFKb8WKuXV9lChoBmgJaA9DCIc2ABsQzl9AlIaUUpRoFU3oA2gWR0CGo5SXt0FKdX2UKGgGaAloD0MIjzaOWIvYXkCUhpRSlGgVTegDaBZHQIakror4Fid1fZQoaAZoCWgPQwgpWrkXmCpTQJSGlFKUaBVN6ANoFkdAhrbVCHARCnV9lChoBmgJaA9DCCTTodNzkGJAlIaUUpRoFU3oA2gWR0CGvOiW3Sa3dX2UKGgGaAloD0MIfVhv1AqrIkCUhpRSlGgVS+doFkdAhr7oYvWYnnV9lChoBmgJaA9DCHhCrz+JtmdAlIaUUpRoFU3oA2gWR0CG0F4XXRPXdX2UKGgGaAloD0MIOllqvd+uWUCUhpRSlGgVTegDaBZHQIbWlM9KVY91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9cbe7b5404720226011f060a505b86c86249e53d4fd3e6bdec71f7c69a60b27
|
3 |
+
size 144092
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f68f2669440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f68f26694d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f68f2669560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f68f26695f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f68f2669680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f68f2669710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f68f26697a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f68f2669830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f68f26698c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f68f2669950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f68f26699e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f68f26b8510>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651772016.8040814,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNRRr4MaY0/apf/vqF5BL/nOEK+kDtevgAAAAAAAAAARiQkvgrPTDzC8dw6Xb1NuQvM1L2xCUY6AACAPwAAgD9AcFQ+BZPAPNrzeLlB2v63SG5SPtjZojgAAIA/AACAP4B2Br6Fc5A68saKO1b5UbmZCYa8TRA6OgAAgD8AAIA/vpWOvs0/Pj64T2w+nvsAvjl9Ij0xw6q8AAAAAAAAAABGtDy+tP92P06Zcr1EmWO+jU2FvYVCSz0AAAAAAAAAADrZor7dki29Ybi7unyMfrnIRng+9nDgOQAAgD8AAIA/QNKqvSlIfbrtW9mzQDj1r4wEDToSZbszAACAPwAAgD8Al149j1J+utYPYrhCZkSzqWUXuygfhDcAAIA/AACAP4adYT4KnTe7THIWN1Zh3bP4PWS8yiIytgAAgD8AAIA/GlNBPY/CL7oK50A72guMOAfEgzs4huO5AACAPwAAgD8CxKK+LxYjPU5xHD6Vnza+osfgPMcHDzwAAAAAAAAAAC32ij5fY748Lig/O4Q00zko31I+uvRpugAAgD8AAIA/TSZoPdzdND2LwgC7PftIvmG887yYSc46AAAAAAAAAABzKu09w7EIuljDMzr+NS810zW1ukIBVLkAAAAAAACAP1pMtr1cG0u6WjUHumdVLzOGRYo6mDxJswAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILgPOUrJYO0CUhpRSlIwBbJRNIwGMAXSUR0CDK9rrxAjZdX2UKGgGaAloD0MInmD/dW4VXkCUhpRSlGgVTegDaBZHQIMyuB4D9wZ1fZQoaAZoCWgPQwiYbaetkblgQJSGlFKUaBVN6ANoFkdAgzX8BMi8nXV9lChoBmgJaA9DCMNF7unq4llAlIaUUpRoFU3oA2gWR0CDNl3Hq/ucdX2UKGgGaAloD0MIGohlM4d1YECUhpRSlGgVTegDaBZHQIM+Wv8qFyt1fZQoaAZoCWgPQwhkyoeganleQJSGlFKUaBVN6ANoFkdAg0A48lolEHV9lChoBmgJaA9DCJ0Te2gfJVxAlIaUUpRoFU3oA2gWR0CDRZz6JqIrdX2UKGgGaAloD0MIvYqMDsiPYECUhpRSlGgVTegDaBZHQINIucUdq+J1fZQoaAZoCWgPQwiKA+j3/TsEwJSGlFKUaBVNSQFoFkdAg0+g1Nxlx3V9lChoBmgJaA9DCKuxhLWxKmJAlIaUUpRoFU3oA2gWR0CDXUiXY150dX2UKGgGaAloD0MIICi37XsFYUCUhpRSlGgVTegDaBZHQINmT52yLQ51fZQoaAZoCWgPQwj1gk9zchJiQJSGlFKUaBVN6ANoFkdAg2ykFfReC3V9lChoBmgJaA9DCIU/w5s1WCdAlIaUUpRoFUvyaBZHQINtxm/WUbF1fZQoaAZoCWgPQwgTEJNwocFhQJSGlFKUaBVN6ANoFkdAg2/Q1R+BpnV9lChoBmgJaA9DCIl5VtKKYFhAlIaUUpRoFU3oA2gWR0CDcGFaB7NTdX2UKGgGaAloD0MIn1kSoKZeM8CUhpRSlGgVTRABaBZHQIOM90tAcDN1fZQoaAZoCWgPQwg9f9qoTqRXQJSGlFKUaBVN6ANoFkdAg5vZGjKxLXV9lChoBmgJaA9DCDPd66S+olpAlIaUUpRoFU3oA2gWR0CDoHNW2gFpdX2UKGgGaAloD0MISIjyBa3xYUCUhpRSlGgVTegDaBZHQIOioeHSF491fZQoaAZoCWgPQwgKuyh64MJjQJSGlFKUaBVN6ANoFkdAg6iScCo0h3V9lChoBmgJaA9DCO55/rRRkmFAlIaUUpRoFU3oA2gWR0CDq5Kp1ie/dX2UKGgGaAloD0MIHXV0XI0aWECUhpRSlGgVTegDaBZHQIOr8PSUkfN1fZQoaAZoCWgPQwiPp+UHrqdfQJSGlFKUaBVN6ANoFkdAg7Pc3dbgTHV9lChoBmgJaA9DCFKazeMwPFtAlIaUUpRoFU3oA2gWR0CDteF36hxpdX2UKGgGaAloD0MI424QrRVwYkCUhpRSlGgVTegDaBZHQIRvc0tRNyp1fZQoaAZoCWgPQwgaFqOutY1hQJSGlFKUaBVN6ANoFkdAhHKm7J4jbHV9lChoBmgJaA9DCDhlbr4RYTNAlIaUUpRoFUvjaBZHQISBnpY9xId1fZQoaAZoCWgPQwjPaRZod8ZhQJSGlFKUaBVN6ANoFkdAhIYcFyJbdXV9lChoBmgJaA9DCPLqHAOymVVAlIaUUpRoFU3oA2gWR0CEjb+c6NlzdX2UKGgGaAloD0MINbOWAlKQY0CUhpRSlGgVTegDaBZHQISTDbQC0Wx1fZQoaAZoCWgPQwgCRSxi2GFlQJSGlFKUaBVN6ANoFkdAhJXALZzxPXV9lChoBmgJaA9DCKUvhJz3WWJAlIaUUpRoFU3oA2gWR0CElkcZLqUvdX2UKGgGaAloD0MIWTLH8q7qEECUhpRSlGgVS+NoFkdAhJ3oRAbADnV9lChoBmgJaA9DCPJ8BtSbqSLAlIaUUpRoFUvhaBZHQIStVuLrHEN1fZQoaAZoCWgPQwiFmEuqNp1lQJSGlFKUaBVN6ANoFkdAhLDt83Mpw3V9lChoBmgJaA9DCAWHF0Sk1GBAlIaUUpRoFU3oA2gWR0CEveK1og3cdX2UKGgGaAloD0MIISHKF7SuYECUhpRSlGgVTegDaBZHQITCBVbRne11fZQoaAZoCWgPQwhjf9k9eTtdQJSGlFKUaBVN6ANoFkdAhMPv8Q7LdXV9lChoBmgJaA9DCEKvP4nPVGBAlIaUUpRoFU3oA2gWR0CEyTTz/ZM+dX2UKGgGaAloD0MITrnCu9xoYUCUhpRSlGgVTegDaBZHQITLuKZUkv91fZQoaAZoCWgPQwhLlL2lnI1iQJSGlFKUaBVN6ANoFkdAhMv/LLZBcHV9lChoBmgJaA9DCIavr3UpvGBAlIaUUpRoFU3oA2gWR0CE0roEB8x9dX2UKGgGaAloD0MI1zGuuDhaF8CUhpRSlGgVS+JoFkdAhNfN+9allHV9lChoBmgJaA9DCE1J1uFowWJAlIaUUpRoFU3oA2gWR0CE2U/ub7TEdX2UKGgGaAloD0MI4q3zb5e0ZUCUhpRSlGgVTegDaBZHQITcSWeHzpZ1fZQoaAZoCWgPQwgKLIApA486QJSGlFKUaBVL02gWR0CE36PT5O8DdX2UKGgGaAloD0MI2zUhrTFabUCUhpRSlGgVTZICaBZHQITivZwn6VN1fZQoaAZoCWgPQwhz2lNyTlZiQJSGlFKUaBVN6ANoFkdAhOpNc4YJmnV9lChoBmgJaA9DCEzBGmdTlGJAlIaUUpRoFU3oA2gWR0CE9fCE6DGtdX2UKGgGaAloD0MIc/bOaKtiXUCUhpRSlGgVTegDaBZHQIT7+0JF9a51fZQoaAZoCWgPQwgw2XiwRUFgQJSGlFKUaBVN6ANoFkdAhP+l+mWMTHV9lChoBmgJaA9DCDTz5JoCzGBAlIaUUpRoFU3oA2gWR0CFGpY7q6e5dX2UKGgGaAloD0MIwqVjzjP9YUCUhpRSlGgVTegDaBZHQIUeXh4t6HF1fZQoaAZoCWgPQwia7nVSX9xwQJSGlFKUaBVNWgJoFkdAhSVuPeYUnHV9lChoBmgJaA9DCKinj8AfImZAlIaUUpRoFU3oA2gWR0CFK73UQTVUdX2UKGgGaAloD0MIHcpQFVM5XkCUhpRSlGgVTegDaBZHQIUyMsDnvDx1fZQoaAZoCWgPQwj/lgD8U69fQJSGlFKUaBVN6ANoFkdAhTfzBRAKOXV9lChoBmgJaA9DCJuNlZjnrmJAlIaUUpRoFU3oA2gWR0CFOtvNNahYdX2UKGgGaAloD0MI7kJzncYrY0CUhpRSlGgVTegDaBZHQIVDY6EJ0GN1fZQoaAZoCWgPQwhffNEer4hjQJSGlFKUaBVN6ANoFkdAhUlx5kbxVnV9lChoBmgJaA9DCHCZ02UxA2NAlIaUUpRoFU3oA2gWR0CFSzVTaTOgdX2UKGgGaAloD0MIb/JbdLI7Y0CUhpRSlGgVTegDaBZHQIYCjtZ3cHp1fZQoaAZoCWgPQwhksrj/yJNkQJSGlFKUaBVN6ANoFkdAhgl57XxvvXV9lChoBmgJaA9DCOgRo+cW4jtAlIaUUpRoFUvYaBZHQIYObynUDuB1fZQoaAZoCWgPQwgEritmhHhfQJSGlFKUaBVN6ANoFkdAhhFgOjIq9XV9lChoBmgJaA9DCO+rcqHyL+Y/lIaUUpRoFUvbaBZHQIYVxSeiBXl1fZQoaAZoCWgPQwhNLPAV3QVcQJSGlFKUaBVN6ANoFkdAhhwOW0JF9nV9lChoBmgJaA9DCHbicrwCdWFAlIaUUpRoFU3oA2gWR0CGIUgYgq3FdX2UKGgGaAloD0MIlrGhm31ZY0CUhpRSlGgVTegDaBZHQIYkRb+tKZl1fZQoaAZoCWgPQwhPHhZqTec/QJSGlFKUaBVL62gWR0CGOdv3JxNqdX2UKGgGaAloD0MIiGnf3N9EZECUhpRSlGgVTegDaBZHQIY7rQ3PzFx1fZQoaAZoCWgPQwj/If32dTdwQJSGlFKUaBVNyQFoFkdAhj33wLE1mHV9lChoBmgJaA9DCOtTjsliImVAlIaUUpRoFU3oA2gWR0CGPwhA4XGfdX2UKGgGaAloD0MIY/GbwkqBaECUhpRSlGgVTSgBaBZHQIZDcMCtA9p1fZQoaAZoCWgPQwiTOCuiJg5iQJSGlFKUaBVN6ANoFkdAhkRcZ1mrbXV9lChoBmgJaA9DCDy858Byq2BAlIaUUpRoFU3oA2gWR0CGSOPQOWjXdX2UKGgGaAloD0MIJ4Oj5FV1Z0CUhpRSlGgVTegDaBZHQIZNKX4TK1Z1fZQoaAZoCWgPQwga+FEN+3JeQJSGlFKUaBVN6ANoFkdAhlFtE5Qxe3V9lChoBmgJaA9DCBIWFXG6wmFAlIaUUpRoFU3oA2gWR0CGU31Iy0rtdX2UKGgGaAloD0MIgNWRI50JJsCUhpRSlGgVS+JoFkdAhlYKN6w+uHV9lChoBmgJaA9DCNWXpZ0a/WBAlIaUUpRoFU3oA2gWR0CGX1VkMCtBdX2UKGgGaAloD0MIfNY1Wg54YkCUhpRSlGgVTegDaBZHQIZkBvLowEh1fZQoaAZoCWgPQwhfC3pvDDkqwJSGlFKUaBVL4GgWR0CGaLWPLgXNdX2UKGgGaAloD0MINpIE4Qo/XUCUhpRSlGgVTegDaBZHQIZrDt/nW8R1fZQoaAZoCWgPQwh9PzVeuhUzQJSGlFKUaBVL/GgWR0CGbxk8RtgsdX2UKGgGaAloD0MIglZgyOpjY0CUhpRSlGgVTegDaBZHQIZzT6tT1kF1fZQoaAZoCWgPQwiU2/Y96utfQJSGlFKUaBVN6ANoFkdAhngabF0gbXV9lChoBmgJaA9DCCfChqfXyWBAlIaUUpRoFU3oA2gWR0CGfw3vQWvbdX2UKGgGaAloD0MI48Yt5ufmbkCUhpRSlGgVTTICaBZHQIZ/R2t+1Bt1fZQoaAZoCWgPQwjzOXe7Xpo2wJSGlFKUaBVNOwFoFkdAho1yzXz19XV9lChoBmgJaA9DCESi0LLuImRAlIaUUpRoFU31AmgWR0CGjuHzH0btdX2UKGgGaAloD0MI9b7xtWdZXUCUhpRSlGgVTegDaBZHQIafZ2r4nF51fZQoaAZoCWgPQwgNwXEZNxZdQJSGlFKUaBVN6ANoFkdAhqFKb8WKuXV9lChoBmgJaA9DCIc2ABsQzl9AlIaUUpRoFU3oA2gWR0CGo5SXt0FKdX2UKGgGaAloD0MIjzaOWIvYXkCUhpRSlGgVTegDaBZHQIakror4Fid1fZQoaAZoCWgPQwgpWrkXmCpTQJSGlFKUaBVN6ANoFkdAhrbVCHARCnV9lChoBmgJaA9DCCTTodNzkGJAlIaUUpRoFU3oA2gWR0CGvOiW3Sa3dX2UKGgGaAloD0MIfVhv1AqrIkCUhpRSlGgVS+doFkdAhr7oYvWYnnV9lChoBmgJaA9DCHhCrz+JtmdAlIaUUpRoFU3oA2gWR0CG0F4XXRPXdX2UKGgGaAloD0MIOllqvd+uWUCUhpRSlGgVTegDaBZHQIbWlM9KVY91ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3870e634864e3e49f17c2b9292b6045235feb80ceaf9f9cb3f285c0cdd1b8d18
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f5239413eccd666e9652243d67cb93ac7e87f3b952557402c096f98cf8e19e1
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.17.3
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68bd16a98d7bfbddc548d8791bcef328a0b5d48df2cdca0cf3442b98a2fb91b7
|
3 |
+
size 248182
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 197.02137662525328, "std_reward": 73.63231969885291, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:54:03.464625"}
|