metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0467
- Precision: 0.8120
- Recall: 0.8640
- F1: 0.8372
- Accuracy: 0.9861
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0959 | 1.0 | 766 | 0.0454 | 0.7838 | 0.8669 | 0.8232 | 0.9849 |
0.0337 | 2.0 | 1532 | 0.0419 | 0.8160 | 0.8550 | 0.8351 | 0.9862 |
0.0247 | 3.0 | 2298 | 0.0467 | 0.8120 | 0.8640 | 0.8372 | 0.9861 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1